
 1

FSUIPC for Advanced Users (for FSUIPC Version 3.90, February 2009)

For changes from the previous release, please refer to the History document.

Contents

General description of FSUIPC main functions ... 2

Options in the FSUIPC.INI file (for FS2000–FS2004 primarily) .. 3
 Message Window Options (FS2004 only) .. 3
 General weather options .. 3
 Winds .. 5
 Visibility ... 7
 Clouds and precipitation ... 9
 Temperature ... 11
 Other options .. 11

Logging facilities .. 17

Monitor facilities ... 17

JoyNames .. 19

Profiles .. 19

Button Programming .. 19
 Format of button definitions .. 21
 Sequences, combinations and mixtures .. 23
 Adding offset conditions ... 25
 Errors in button parameters .. 28

Keyboard programming ... 29
 Format of key definitions .. 29
 Errors in key parameters .. 30

Additional “FS” controls added by FSUIPC ... 31

Macro controls ... 37

Axis assignments ... 41

Programs: facilities to load and run additional programs .. 42

Assignment of FLAPS_SET control (for FS2002 only) ... 43

Assignment of additional controls .. 43

Multiple joysticks .. 44

Helicopter pitch and bank trim ... 45

Message Filters ... 45

Facility for multiple INI installations ... 46

Appendix: “About the Aircraft Specific option and „ShortAircraftNameOK‟” 47

 2

General description of FSUIPC main functions

FSUIPC cannot and does not convert everything that may ever have been known in FS98 to work in the same way in

FS2000, and it gets harder and harder in FS2002 and FS2004. It does its best, and will improve as it is developed and

as more is found out about FS innards. Many actions in FS98 that were simply triggered by writing into the global

data area simply will not work that way on the subsequent versions. For each specific action which may be needed

and which doesn‘t simply map to a location, FSUIPC has to trap the changes and call routines in different parts of FS

to cause the action to occur. So far this works with throttles and many of the other analogue inputs, and with some

other things, but by no means everything (yet).

That understood, FSUIPC provides the following additional facilities when used with FS2000–FS2004:

 Converts FS98 offsets, for data in the FS globals area, into appropriate offsets for the same data in the later

versions. This applies to those that are known to have moved but which are still available and located

successfully. Note that sometimes the changes vary even in a single version: for example the N1% and N2%

values for Jets are in the FS98 positions for transposed FS98 aircraft but swapped over for FS2000 native

aircraft. FSUIPC deals with this particular difference (but not for FS2002 or FS2004, where it seems

unnecessary).

 Obtains some information such as ambient wind details, jet EPR, Fuel Flow, and other engine related data which

is not otherwise available in the later FS globals at all, or actually available for some aircraft types and not

others.

 Provides operating analogue inputs from locations for throttles, propeller pitch, fuel mixture and many other

aspects which otherwise don‘t occur because the data there is not acted upon when changed. Amongst the

controls here are gear, brakes, spoilers, flaps and of course the primary flight controls.

 Constructs weather data structures for the different FS weather engines from FS98-style weather details placed

into the old FS98 global weather positions. This allows programs such as Real Weather, FS_Meteo, Flight

Director and SquawkBox to control the FS weather as they did in FS98, or better.

 Detects when FS2000 or FS2002 downloaded ‗real weather‘ is in operation locally, and decodes this for

application programs to use. If a weather control program wants to change the weather, FSUIPC automatically

clears the local weather so that the external control can be implemented. In FS2004 external programs can read

specific weather at named stations.

 Optionally patches the FS2000/2002 adventure interpreter so that the FS98 weather variables again contain

relevant weather data (assuming the other weather features are also left enabled). See the section later, entitled

―Weather Data for Adventures‖. Note that this is not applicable to FS2004—the old Adventure system is no

longer supported by FS.

 Provides additional joystick calibration and centring facilities and enables fully proportional analogue toe brakes

to be used in FS2000 (these weren‘t otherwise supported by FS then).

None of these functions are performed by WideServer (part of the WideFS package). Because of the complications

surrounding the operation of throttles, flight controls and other inputs, and of course the weather system, WideServer

depends upon FSUIPC to perform ALL accesses to FS‘s innards. It is therefore important, when both modules are

used, to make sure they are compatible.

 3

Options in the FSUIPC.INI file (for FS2000–FS2004 primarily)

In a user-registered FSUIPC installation, all of the interesting options can be controlled through the Options and

Settings window obtained by selecting the FS Modules menu, then FSUIPC (ALT, M, then F). This is the

recommended way, and allows changes ‗on the fly‘. Changes made in that dialogue are recorded in a file so that they

are retained for the next re-load.

Almost all of these options are all recorded in the [General] section of FSUIPC.INI, which is an editable text file

initially created for you in the Modules folder. There are many weather processing options, and almost all are only

applicable to FS since FS2000 (and possibly CFS2). Those marked (*) can be controlled (i.e. overridden) by external

programs interfacing to FSUIPC, unless this is prevented by the ExternalOptionsControl parameter.

Only those parameters shown underlined are not adjustable within the Settings window (for a registered user).

Message Window Options (FS2004 only)

Unlike almost all of the other parameters here, these are all available to unregistered users as well as those who have

registered.

ShowMultilineWindow: This will be ―Yes‖ if the relevant checkbox on FSUIPC‘s front page (About+Register) is

checked. Multiline messages are directed to a translucent window like the one used by FS‘s ATC.

SuppressMultilineFS: Determines whether multiline messages are forwarded on to FS for its message window. If

the above option is ‗Yes‘ then this setting isn‘t relevant.

SuppressSingleline: Operates the option to prevent all single line messages in FS‘s (or AdvDisplay‘s) message

window. Such messages are simply discarded if this option is selected.

See also WhiteMessages and AdvDisplayHotKey, both covered in the ‗Other Options‘ section.

General weather options

PatchWeatherToADV: This parameter controls the facility, specific to FS2000/2002 only, to patch the variable

table in ADVDRV.DLL (the adventure interpreter) so that the weather variables report the same sort of values for the

same sort of weather as did FS98. In FS2002 this option also controls the patching of autopilot values and control

facilities, which would otherwise be missing. Only set this to ―No‖ if you do not want such FS98 compatibility for

your adventures. Note that successful patching is Logged (if logging is enabled at all), as is an unsuccessful attempt.

This facility is not applicable to FS2004 or later.

AdjustWeatherATIS: This option applies to FS2002 only and is primarily intended for FSMeteo users. When

enabled, and the user is running with ‗global‘ weather (not downloaded or manually set local weather), FSUIPC

intercepts weather requests from ATIS and ATC and substitutes ‗corrected‘ values. For cloud bases it provides AGL

values, and for clouds, pressure (QNH) and visibility, it provides destination values. These can all be set separately

by programs such as FSMeteo. The AGL values provided depend on the surface temperature altitude value being

correctly set. FSMeteo sets this to the METAR station altitude. If it isn‘t being set, FSUIPC uses the current ground

altitude, which may give odd results at times. This facility is not applied to FS2004 as it is not needed.

AutoClearWeather: FSUIPC will, by default, automatically operate the "Clear All Weather" function in FS2000–

2004 if local weather is in force and:

(a) An FS98 weather control program changes the weather, or

(b) The "Force Weather" hot key is used (see next parameter), or

(c) The "Clear All" command is received on the Advanced or (in FS2004) New Weather Interfaces.

If this automatic action is not required, set this parameter to ―No‖.

Note that in FS2004, FSUIPC assumes that local weather is always in force. The way FS2004‘s weather engine

works allows no differentiation. Each weather station is populated with weather details which may be unique, or

which may derive directly from a global set of values. In addition, FS2004 implements a weather changing

algorithm, ―weather dynamics‖, which can allow the weather to be changed individually at each station with time.

FSUIPC will, by default, turn off the dynamic action when it clears all weather by any of the above methods except

the New Weather Interface (which has its own Dynamics control facility). This option is set in FSUIPC‘s Technical

page and by this INI parameter:

 4

ClearWeatherDynamics: For FS2004 only, see above.

OwnWeatherChange: For FS2004, this is defaulted to ‗No‘. When set ‗Yes‘ it allows the weather filtering options

for clouds, winds and visibility to be applied to FS‘s own global weather (as opposed to global weather set through

FSUIPC by an external program). The disadvantage of having this option enabled is that FS2004 weather then

always reverts to ―User Defined‖ whenever any weather filter options are enabled, preventing weather ―Themes‖

remaining selected. This option is controlled by a check box on the Technical options page.

ForceWeatherKey: This allows you to assign a key press which, when used, will force-update the weather. When

you use this keystroke it will re-form the FS2000/2002 weather from the last weather received from the external

application. It will even remember the last weather received from the application after the latter is terminated. The

second time it is used with no intervening Weather change it clears the weather completely, just as if FS2000‘s

―Clear All Weather‖ button had been pressed.

Note that if the ―AutoClearWeather‖ option is disabled you may need to clear the weather manually in the FS

dialogues before the hotkey will restore the external weather.

The keystroke is defined as in Flight Simulator‘s own controls, and documented in my FS98 and FS2000 Controls

documents (and listed below, in the Button Programming section). For example, I use (and recommend)

"CTRL+SHIFT+W" which would be

 ForceWeatherKey=87,11

The same control codes are used in FS2002 and FS2004.

SendWeatherInterval: In FS2002 (only), the weather provided by the built-in ATIS reports does not necessarily

abide by the current weather prevailing. To get these reports updated, FSUIPC has to send weather change signals to

other parts of FS2002. Unfortunately this results in an update of the ATIS identifier, which in real life only occurs at

hourly intervals. So FSUIPC offers two options: this one, to set the minimum interval between weather updates for

ATIS (in seconds), and the next one, to avoid sending any such updates unless the weather has changed noticeably.

The default interval is set for 60 seconds. You shouldn‘t set it too short, but you may want to set it to a larger value.

But be aware that this interval is imposed even if you transit to another METAR station area, but FSUIPC does

recognise when you‘ve loaded a new flight, so the interval is not imposed at this time.

To stop FSUIPC ever sending weather change signals, set this parameter to 0.

SendWeatherAlways: [FS2002 only] By default the ATIS weather is only sent when there are noticeable changes in

the weather (the criteria are listed below). By setting this parameter to ‗Yes‘ you can make FSUIPC send the updates

at the specified intervals whether there‘s been any change or not.

The criteria for deciding on weather changes are as follows. You should note that all these refer to surface weather,

not necessarily the weather at the aircraft. Furthermore, if you are using FSMeteo and have set the destination

weather, and FSMeteo has now supplied this for ATIS reports, it will be this weather which is used in the

comparison even though FS‘s own ATIS will be reacting to current weather, not the station weather.

 Surface temperature altitude changed* (this is used for METAR station elevation)

 Temperature changed by more than 3C

 Wind speed changed by more than 5 knots

 Wind direction changed by more than 5 degrees

 Cloud base changed by more than 500 feet

 Cloud cover (lowest layer) changed by more than 2 oktas

 Any change in precipitation from the lowest cloud layer*

 Visibility changed by more than 50% of lower value

 Barometric Pressure changed by more than 5 mb

*Note that the broadcast is performed immediately and without further checks when there‘s any change in the

METAR station altitude or in precipitation, no matter what these INI file parameters say. This is in an attempt to

prevent the FS2002 problem whereby the cached weather retains everlasting rain even though ―Clear All Weather‖

actions.

 5

Winds

WindTransitions (*): [Not FS2004] If you enable this option FSUIPC will operate all FS2000/2002 winds other

than those in ‗local weather‘ mode (provided by the downloaded ‗real weather‘ feature) in such a way that the

transition across wind layers is reasonably smooth. It does this by setting only one wind layer into FS2000/2002—a

very deep surface wind layer. The wind speed and direction is then programmed into this layer on a second-by-

second basis according to the actual requested wind layer prescribed by the weather control program and the current

plane altitude. At altitudes nearer to a layer boundary than 250 metres the actual speed and direction is computed

proportionally.

Note that if 250 metres is more than 10% of the current layer‘s thickness, then that 10% is used instead. This allows

some amount of wind shear to be set if required by defining a very narrow upper wind layer.

WindSmoothing (*): [FS2004] This option controls the FS2004 wind smoothing options, both those dealing with

externally set global weather (not so effective), and those operating only on the wind experienced at the aircraft.

WindSmoothness: Except on FS2004, where it operates differently, this facility only operates when

WindTransitions are enabled, but unlike WindTransitions, it also works for downloaded ‗local weather‘. It allows the

wind changes to be restricted to a maximum of so many knots and so many degrees per second—with the default set

to 5 (knots or degrees), which seems to work quite well. It is designed to prevent sudden wind changes when the

weather control program selects a new METAR station, or the user loads a new METAR report. The feature does not

operate when the aircraft is on the ground (or being slewed in the air from a ground start). To switch the smoothing

off, set this parameter to 0.

On FS2004 wind smoothing operates on two ways. First, rather ineffectively (because FS2004 weather does not stay

global), it works on global weather set by external programs. In this case it smooths changes to the wind layer in

which the aircraft is currently situated, and the one immediately above and below. Second, with rather too much

effect (as it smooths out gusts and turbulence too), it operates on the wind actually experienced at the aircraft. In this

case the smoothed wind may not be reflected in ATIS and other weather reports.

WindSmoothingDelay:

WindSmoothAirborneOnly: These two, for FS2004 only, control the timing of the all-weather wind smoothing

action, if it is enabled. The ―delay‖ value is in seconds, and delays the start of smoothing after any ―clear all

weather‖ action (whether by loading a Flight, using the FS weather menus, using the FSUIPC clear weather facility,

or by specific external program action). The option to smooth only when airborne allows the winds at the airport to

be changed and set as desired, before take off.

ExtendTopwind: This option extends the highest current wind layer to operate all the way up to 100000 feet. This is

really intended as a stop-gap for downloaded real weather, which only supplies a thin surface wind layer and no

upper winds. On FS2004 this is only applied to global weather and all externally supplied weather.

MaxSurfaceWind: This allows the surface wind to be limited to a specified maximum wind speed, in knots. This

facility is disabled if the value assigned here is 0. It applies to winds from any source.

WindDiscardLevel: This parameter sets a wind speed above which inputs from an external weather control

program, using the FS98 interface (not the Advanced or New Weather Interfaces) are ignored. The default for this

value is 400 knots. If a weather control program tries to set a wind speed above this, it is ignored and the previously

set speed for this wind layer is retained. (This parameter is provided specifically to prevent problems occurring with

programs using corrupted data from an Internet download or other problems). Set this parameter to 0 to disable this

check altogether.

WindLimitLevel: This parameter sets a limit on the wind speed which can be accepted from an external weather

control program, using the FS98 interface (not the Advanced or New Weather Interfaces). The default for this value

is 200 knots. If a weather control program tries to set a wind speed above this (but below the ―WindDiscardLevel‖

above), it is ignored and 200 knots is set instead. Set this parameter to 0 to disable this check altogether.

WindShearSharp: [not FS2004] Set to ‗No‘ to make FSUIPC set the Wind Shear to the default (minimum) setting.

FSUIPC normally sets this to "Sharp" to avoid horrible spurious winds occurring during the transition, apparently an

FS2000 bug (which may or may not be fixed in FS2002). [Note: if ―WindTransitions=Yes‖ there are no wind layer

transitions seen by FS2000/2002, so this parameter then does nothing].

UpperWindGusts (*): Set to ‗Yes‘ to make FSUIPC copy the upper wind gust information provided by the weather

control program. These are normally suppressed by FSUIPC because upper winds aren't gusty, and FS's gusts can

seem pretty wild anyway. Note: this parameter is not operational if SuppressAllgusts has been enabled. On FS2004

this is only applied to global weather and all externally supplied weather.

 6

SuppressAllGusts: Set this to ‗Yes‘ if you feel that FS‘s simulation of wind gusts is unrealistic, and cannot be

corrected by the adjustments in the FS CFG suggested elsewhere. If this is set to ―Yes‖ then the UpperWindGusts

parameter is ineffective. On FS2004 this is only applied to global weather and all externally supplied weather.

GustsRelative: Set to ‗No‘ to set gust velocities as the maximum gust speed, which is what FS2000 should be using

according to the way the Winds dialogue works. The default setting (Yes) makes FSUIPC set gust speeds to the

difference between the upper gust speed and the normal wind speed. This is to get around an apparent bug in FS2000

where it seems to add gust speeds to the wind speed rather than treat them as a maximum. (See the hints in the main

User Guide on getting FS2000 gusts working better). The parameter is not used on FS2002 or later. The correct

setting for FS2002 is actually No and this is assumed.

WindTurbulence: Set this to ‗Yes‘ to make FSUIPC generate some random turbulence in all wind levels. This will

range from none to extreme, but it will normally stay fairly mild. If this is set it overrides any other settings, from

FS2000/2002 ―real weather‖ or from an external weather program. It will vary over time as well.

On FS2004 this is only applied to global weather and all externally supplied weather.

SuppressWindTurbulence: Set this to ‗Yes‘ to prevent any wind turbulence. This is mainly intended to help

maintain good frame rates in FS2002 even with dense A.I. traffic. There‘s a similar option for cloud turbulence. On

FS2004 this is only applied to global weather and all externally supplied weather.

LimitWindVariance: [FS2004 only] This option limits the amount of wind variance (direction changeability) which

external programs can set. It is progressive—more variance is allowed for lower wind speeds.

ToggleTaxiWindKey: This allows you to assign a keypress which, when used, will swap the current surface layer

wind speed and gust setting with a wind speed of 1 knot and no gusts (or, with FS2004‘s reduced crosswind mode

enabled, just reduces the crosswind component). Using the same hot key again will restore the original speed and

gust setting. Except on FS2004, if it is used when the current wind is not related to the requested surface wind layer

then nothing is changed (but a ‗beep‘ may be heard as a warning). On FS2004 it applies to the wind experienced at

the aircraft, independently of wind layers.

Note that this is inoperative if AutoTaxiWind is enabled

This feature can be useful to avoid the excessive weather-vaning whilst taxiing. It works with any type of weather

applied to FS2000/2002/2004, but only on the lowest wind layer in the first two. However, the AutoTaxiWind is

probably more suitable for most uses.

The keystroke is defined as in Flight Simulator‘s own controls, and documented in my FS98 and FS2000 Controls

documents (and listed below, in the Button Programming section). For example, I use (and recommend)

"CTRL+SHIFT+T" which would be

 ToggleTaxiWindKey=84,11

The same control codes are used in FS2002 and FS2004.

AutoTaxiWind: This feature operates the taxi wind automatically, normally setting it to 1 knot when the plane is on

the ground, and allowing the correct wind to transition in (according to the WindSmoothing setting above) after take-

off. If this option is enabled the manual taxi wind on/off switching is disabled.

On FS2004, if the reduced cross-wind option is enabled, then the taxi wind is implemented as a reduced cross wind

instead of an outright reduction to 1 knot. The cross wind is reduced to near zero at ground speeds below 20 knots,

then allowed to increase proportionally to the ground speed–more so on heavier aircraft. In autom,atic mode this

applies both on the ground and when airborne but within 500 feet of the ground.

PropTaxiWind: This applies to FS2004 only, and is set to ‗Yes‘ when the reduced cross-wind option is enabled. It

is ‗No‘ by default for compatibility with previous versions of FSUIPC.

WindAjustAltitude: (Apologies for mis-spelling). Set to ‗Yes‘ if FSUIPC should add the value specified in

WindAjustAltitudeBy to all the wind layer boundaries specified by an external weather control program using the

FS98 interface (not the Advanced or New Weather Interfaces).

WindAjustAltitudeBy: See previous parameter. This is in feet and defaults to 2000.

WindSetVariance: [Not FS2004] When this option is enabled it makes FSUIPC convert any wind turbulence into

wind ―variance‖. On FS2000 this is done for all wind layers, but in FS2002 it is only applied to upper layers. This

feature seems to at least make FS do something (actually it introduces random variations in the wind direction),

whilst the turbulence options seem ineffective.

 7

WindVarFactor: [Not FS2004] This sets a value from 1 to 20 (default 7) which effectively controls the percentsge

effect of wind turbulence on wind variance, when The WindSetVariance option is enabled. The default of 7 is

rather less that the value I felt was realistic, which would be 10 (equating to 100%). In FS2002 the factor is doubled

internally before being applied, as the effect seems rather feeble otherwise.

MagWindsToFST: [Not FS2004] If this is set ‗Yes‘ then the wind data supplied to FSTraffic gives the wind

direction in degrees Magnetic. Otherwise this is in degrees True, as it would be without FSUIPC running.

UpperWindsToFST: [Not FS2004] Set this to tell FSUIPC to send a fixed surface wind direction to FSTraffic when

the aircraft is above a specified altitude. This is needed by some tracks for airways. As an example:

 UpperWindsToFST=270,18000

Will cause all surface winds reported to FSTraffic to be from 270 degrees (Mag), once the aircraft is above 18000

feet.

SubterraneanWindFix: This is a facility in FS2002 only to ‗fix‘ the odd winds up to 1000 feet AMSL which occur

in the FS2002 downloaded ―real weather‖, even at METAR stations which are at altitudes over 1000 feet. It is

defaulted on (‗Yes‘), because these inaccessible surface winds otherwise cause several other FSUIPC facilities to go

wrong—most noticeably the Taxi Wind option.

Visibility

MinimumVisibility: This parameter, which defaults to 0 (meaning it is inactive), is used to prevent any weather

source setting a visibility below a specified minimum. The value is set in hundredths of a statute mile (i.e. 100 = 1

mile). Note that there may be a short delay (possibly a second) after a new low visibility has been applied before it is

detected and corrected by FSUIPC.

On FS2004 this is applied to global weather and all externally supplied weather, and since FSUIPC 3.51, to FS‘s

own weather. However, if it is being imposed on FS‘s own weather the current visibility will not be reported

correctly in weather reports such as those read by external programs and ATIS in FS. This is because the only way of

imposing the visibility minimum is by changing the effect at the end stage, the rendering at the aircraft, and not in the

weather system as such.

MaximumVisibility: This parameter, which defaults to 2000 (20 miles), is used to prevent any weather source

setting a surface visibility above a specified maximum when there is any cloud layer with more than 2/8ths cover.

The value is set in hundredths of a statute mile (i.e. 100 = 1 mile). Note that there may be a short delay after a new

high visibility has been applied before it is detected and corrected by FSUIPC. The parameter is only effective if the

value is greater than the MinimumVisibility parameter.

On FS2004 this is applied to all weather, and is independent of the visibility layer too.

MaximumVisibilityFewClouds: This is the same as the previous parameter, except that it gives the maximum to be

used when there are no cloud layers of more than 2/8ths cover. It defaults to 6000 (60 miles) The idea is that the

extended visibility gives bluer skies by day and more stars by night (but lower frame rates. Sorry, you can‘t win

every way <G>).

On FS2004 this is applied to all weather, and is independent of the visibility layer too.

MaximumVisibilityOvercast: This is the same as the previous parameter, except that it gives the maximum to be

used when there is at least one cloud layer of more than 6/8ths cover. It defaults to 2000 (20 miles).

On FS2004 this is applied to all weather, and is independent of the visibility layer too.

MaximumVisibilityRainy: This is the same as the previous parameter, except that it gives the maximum to be used

when there is any rain or snow. It defaults to 1000 (10 miles). If it is raining and cloudy the lower of the applicable

limits is used.

On FS2004 this is applied to all weather, and is independent of the visibility layer too.

LowerVisAltitude: [Not FS2004] When the visibility is set from an FS2000/2002 source, such as its downloaded

‗real weather‘, or by the user setting it through the weather dialogues, there is already an upper altitude, above which

global visibility values take over (unless influenced by FSUIPC‘s graduated visibility facility, described below).

However, for visibility controlled by external programs, via the FS98-compatible interface, there is no such altitude

so one has to be inserted by FSUIPC. This is specified by LowerVisAltitude in feet, which defaults to 6000.

 8

GraduatedVisibility (*): With this enabled FSUIPC provides a smooth change in visibility from the upper altitude

of the surface level visibility to a specified upper visibility at another, specified, upper altitude. The two parameters,

UpperVisibility and UpperVisAltitude, control this. The surface visibility extends up to the LowerVisAltitude

(above) for visibility controlled by external programs using the FS98 interface, but is controlled by FS2000/2002 for

its ―real weather‖ or for visibilities set through the FS2000/2002 dialogues.

On FS2004 this facility is applied to all weathers irrespective of the visibility layer.

UpperVisibility: On FS2000 and FS2002 this parameter, which defaults to 6000 (60 statute miles), is used to

prevent any weather source setting a visibility above a specified maximum. The value is set in hundredths of a statute

mile (i.e. 100 = 1 mile). If GraduatedVisibility is enabled, it is used in conjunction with the next parameter (on

FS2004 too).

UpperVisAltitude: This is only used when GraduatedVisibility is enabled, and sets the altitude by which the

UpperVisibility should be attained. Above this altitude the visibility stays fixed at this value. The default

UpperVisAltitude is 25000 feet.

ExtendMetarMaxVis (*): This checks the visibility being set and adjusts it in three specific circumstances, as

follows:

1. If the FS98 program sets it to a value between 99.95 and 100.04 miles, it is reset to 6.20 miles. This is

in order to rectify the results from any programs that take the 9999 metre maximum METAR visibility

and transmit it literally as a number of 1/100ths of statute miles.

2. If the value is then in the range 6.15 to 6.24 miles (i.e. close to the 9999 metres maximum of a metric

METAR), it is adjusted to a random value between 6.20 miles and the current maximum value (which

will either be the MaximumVisibility parameter value, or 150 miles).

3. If the value is between 9.95 and 10.05 miles (i.e. close to the 10 statute mile maximum of a U.S.

METAR), then it is adjusted to a random value from 10 miles to the current maximum (which will

either be the MaximumVisibility parameter value, or 150 miles).

Note that the random addition is computed only once every five minutes, to avoid constant changes in visibility

should the weather control program re-write the value from time to time.

On FS2004 this is only applied to global weather and all externally supplied weather.

SmoothVisibility and VisibilitySmoothness control the option to smooth visibility changes from external programs.

The former parameter switches the option on or off (default ―No‖), and the second sets the number of seconds of FS

elapsed time for each 10% change in the visibility range (default 2). On FS2004 this applies to all weather, and is

independent of the visibility layer.

VisSmoothingDelay:

VisSmoothAirborneOnly: These two, for FS2004 only, control the timing of the all-weather visibility smoothing

action, if it is enabled. The ―delay‖ value is in seconds, and delays the start of smoothing after any ―clear all

weather‖ action (whether by loading a Flight, using the FS weather menus, using the FSUIPC clear weather facility,

or by specific external program action). The option to smooth only when airborne allows the visibility at the airport

to be changed and set as desired, before take off.

SetVisUpperAlt and VisUpperAltLimit are for FS2004 only, and control the option to impose an upper limit on the

FS2004 visibility layer, when the weather is being set from the global values or by an external program. The default

is 6000 feet, and this is set when zero occurs here.

 9

Clouds and Precipitation

These rain and storm facilities are for FS2000 and FS2002 only:

GenerateRain (*): Set this option to ‗Yes‘ to allow FSUIPC to provide semi-random rain/snow generation,

assuming the external weather program is not controlling this. For rain or snow FSUIPC requires 3 or more

oktas of cloud (1 okta if it is a thunder cloud) and a cloudbase at no more than 3000‘ AGL.

RainStarter: controls the probability of rain or snow starting. This check occurs every minute or so. The

default is 75 (out of 100). A value of 100 guarantees rain starting, providing the cloud is suitable as described

above.

RainStopper: controls the probability of rain or snow stopping. This check occurs every minute or so. The

default is 75 (out of 100). A value of 100 guarantees rain stopping.

StormsAutomatic (*): Leave as ‗No‘ to allow suitably programmed weather control programs to use all three

FS98 cloud layers for any types of cloud. With this option set to ‗Yes‘ the "thunderstorm" layer can only be

used for storms, as it was in FS98.

StormProbability: A value from 0 to 100 representing a percentage probability of a storm. For a storm to be

generated the winds and clouds must also be adequate—as defined in StormParameters below. This is

checked every two minutes. The same probability is used to determine when a storm dissipates, after its

minimum duration.

StormParameters: This should be used with care. The value provided is used to determine what conditions

must prevail before a ‗random‘ storm is even considered. It is used as follows:

 StormParameters=WWCBBHD

All 7 characters are decimal,

 WW Minimum surface wind speed needed (in knots). Default is 10.

 C Minimum cloud cover (1–8, default 3).

 BB Maximum cloud base AGL, in thousands of feet (default 05, i.e. 5000 feet).

 H Minimum cloud thickness, in thousands of feet (default 3, i.e. 3000 feet).

 D Minimum duration of storm, in minutes, with 0 meaning 10 (default 0, i.e. 10 minutes)

Regardless of the value of D, the duration may be extended at random, with a probability then of it ending

being the same as that of it starting. Of course if the cloud or wind conditions change the storm may end much

earlier than the specified minimum.

The default parameter (applicable even if it not shown in the .ini file) is therefore:

 StormParameters=1030530

StormMinTemp: This is an additional Storm Parameter, and sets the minimum surface air temperature at

which the random storms will be allowed to occur. Default is 10 (Celsius), range –99 to 99.

Most of the other cloud facilities do apply to externally-supplied weather for FS2004:

GenerateCirrus (*): Set to ‗No‘ to stop the occasional extra cirrus layer being added automatically by FSUIPC. Set

to ‗Force‘ to make FSUIPC add the occasional cirrus layer even if an external weather control program turns the

option off.

CloudforJetTrails: For FS2000 and FS2002, set to ‗Yes‘ to make FSUIPC often add a 1/8
th

 cover cumulus layer,

high (but below the added cirrus). This is in order to allow Jet Trails to be produced by FSClouds 2000.

CloudForVSky: For FS2002 only, set to ‗Yes‘ to generate a top layer of overcast cirrus, for FS Sky World SE‘s

―virtual sky. The minimum altitude is then given by MinVSkyAltitude in feet.

OneCloudLayer: This defaults to ‗No‘. Set it to ‗Yes‘ to prevent there ever being more than one layer of clouds.

This may help get better performance on slower machines. It won‘t help much on faster machines.

ThinClouds, ThinThunderClouds: These default to ‗No‘. Set to ‗Yes‘ to prevent any single cloud layer being

thicker than 1000 (or 10000) feet (or whatever is set in the CloudThinness (or ThunderCloudThinness) parameter,

below), from the nominal cloud base to its top (not including any variations which may be set). This may help get

better performance on slower machines. It won‘t help much on faster machines, but it could be used to get more

realistic cloud thicknesses if weather programs generate them too thick. Note that if the thunder cloud one is not

enabled, the other applies to all cloud layers.

 10

CloudThinness, ThunderCloudThinness allow the limits applied by the ThinClouds and ThinThunderClouds

options to be changed. The defaults are 1000 and 10000 feet. The range accepted in both cases is 100–59999 (feet).

CloudTurbulence: Set this to ‗Yes‘ to make FSUIPC generate some random turbulence in all cloud layers. This will

range from none to extreme, but it will normally stay fairly mild. If this is set it overrides any other settings, from

FS2000 ―real weather‖ or from an external weather program. It will vary over time as well.

SuppressCloudTurbulence: Set this to ‗Yes‘ to prevent any cloud turbulence from any source. This is mainly

intended to help maintain good frame rates in FS2002 even with dense A.I. traffic. There‘s a similar option for wind

turbulence.

CloudTurbulenceToWinds: This is for FS2000 global weather only, and is an alternative way of dealing with the

frame rate hit with dense A.I. traffic. If the option is selected, cloud turbulence is removed and instead emulated by

wind turbulence when flying in the cloud layer. This helps frame rates while outside the cloud layer, but not whilst

within it.

CloudIcing: Set this to ‗Yes‘ to make FSUIPC generate some random icing in clouds. This will range from none to

extreme, but it will normally stay fairly mild. If this is set it overrides any other settings, from FS2000 ―real weather‖

or from an external weather program. It will vary over time as well.

MaxIce: For FS2004 only (where the icing effects seem to be substantially increased over FS2002). The value here

is 0–4 to limit the icing to that level (0 = No icing, 4 = Any icing), with the default set to 3 (just preventing ―severe‖

icing, level 4). If the option is actually disabled the value is retained by saved as a negative number. In this case –1

represents 0 but disabled, to –5 representing 4 disabled. Note that in FS2004 only the global FS weather and inputs

from weather programs can be so limited. Furthermore FS‘s own global weather is not changed unless the

appropriate technical option is enabled.

MaxIce: Also for FS2004 only. The value here is 0–4 to ensure that icing is never below a given level (<=0 = No

icing, 4 = Max icing). A value set greater than MaxIce will operate only to make all icing the same as the MaxIce

level. Note that in FS2004 only the global FS weather and inputs from weather programs can be so set. Furthermore

FS‘s own global weather is not changed unless the appropriate technical option is enabled.

ApplyVisFix: [Not FS2004] By default FSUIPC will attempt to stop the ―stuck low visibility‖ or white-out problem,

apparently due to a bug in FS2000‘s Weather.dll. It does this by checking the effective visibility once a second and

trying to progressively correct it if it is lower than it should be when the aircraft is not inside a cloud layer. Note that

the detection of cloud layers is not 100% reliably done at present (I‘m working on it!), but at least the only bad

symptom should be an occasional higher visibility than you‘d expect. Note that it isn‘t proven than this ‗fix‘ works in

100% of cases where a whiteout may occur, but it certainly reduces their frequency by a large amount!

When Microsoft fix the bug causing the problem, simply disable this work-around by setting ApplyVisFix=No.

Whether the bug still exists in FS2002 has not been determined at the time of writing.

FixRainProblem: This applies to FS2002 only, and by default it is set to ‗Yes‘. It tells FSUIPC to take special steps

to prevent the ‗everlasting rain‘ problem occurring when using an external weather program, like FSMeteo. If MS

does ever fix this FS2002-only bug then you can make FSUIPC a little more efficient by changing this option to

‗No‘.

KeepFS98CloudCover: When the clouds are set through the FS98 IPC interface (as from SquawkBox, but not

FSMeteo), FSUIPC adjects the cover requested for Cumulus type clouds to make them ―look right‖. It adds 2 to the

Okta value for coverage below 5. Without this a cover requested as ―scattered‖ (3/8) can look very sparse. If you

want the okta coverage in FS to match the setting made by the external program, set this parameter to ‗Yes‘. (Note

that you should not attempt to use FSClouds vapour trails if you do this, otherwise they can appear at the wrong

altitude).

CloudTypesFixed: If you are using a weather setting program which tries to set cloud types not supported in

FS2004 (resulting often in an eventual crash in Weather.DLL), you can add the parameter CloudTypesFixed=Yes to

the [General] section of the FSUIPC.INI file. This tells FSUIPC to map all supplied cloud types to one of those

known, i.e: 1 (Cirrus), 8 (Stratus), 9 (Cumulus), 10 (Cumulonimbus).

 11

Temperature

CopyDewPtToDayNightVar: [Not FS2004] When there are multiple temperature layers, the ATIS reports of

FS2002 (and perhaps FS2000) get the Dew Point wrong: they report the Day/Night variation as the Dew Point. To

get around this, FSUIPC normally copies the Dew Point to the Variation. The latter is not actually used in FS2000 or

FS2002 in any case. If you want to stop this occurring, just set this parameter to ‗No‘.

Other options

RemoveATC: This makes FSUIPC apply patches to FS2004‘s ATC.DLL module, to forcibly prevent the FS ATC

windows from appearing at all, and to prevent any of three different crashes which can occur in ATC.DLL when

running FS with third party ATC programs and FS‘s ATC turned off. Note that this should only be used when you

absolutely do not want FS‘s ATC to apply to your flights, for instance, when you use only Radar Contact, or possibly

VoxATC. It does not prevent the ATC voices, the AI traffic vocal interactions and ATIS read-outs. You may want

those as additional chatter in any case, but if not just turn off the ATC sound, or turn it down, in FS‘s sound options.

This option is available to unregistered FSUIPC users too.

ExternalOptionControl: Set this to ‗No‘ if you want to retain control over all the settings for FSUIPC. Normally

some of the original options are available for an external weather control program to set according to its needs.

AdvDisplayHotKey: This allows you to assign a key press which, when used, will hide or (if there‘s no other reason

it is hidden) display the AdvDisplay and/or multliline message window. For this to work in AdvDisplay you need to

be using AdvDisplay version 2 or later. The FSUIPC message window is only available in FS2004.

The keystroke is defined as in Flight Simulator‘s own controls, and documented in my FS98 and FS2000 Controls

documents (and listed below, in the Button Programming section). For example, I use (and recommend)

"CTRL+SHIFT+A" which would be

 AdvDisplayHotKey=65,11

The same control codes are used in FS2002/4.

PFCrestartHotKey: This allows you to assign a key press which, when used, will tell the PFC driver (PFC.DLL) to

restart all of its serial port activity, including closing and re-opening the port. For this to work you need to be using

PFC.DLL version 1.63 or later.

The keystroke is defined as in Flight Simulator‘s own controls, and documented in my FS98 and FS2000 Controls

documents (still applicable to FS2002/4, and listed below, in the Button Programming section). For example, I use

(and recommend) "CTRL+SHIFT+P" which would be

 PFCrestartHotKey=80,11

AllEngHotKey: This allows you to assign a key press which, when used, will re-select all engines on the currently

loaded aircraft. It is effectively the same as using the keypress E plus 1, 2, 3, 4 on the main keyboard, depending on

the number of engines, but the hot key will work when, apparently, the proper key sequence does not (on three

engined aircraft it seems). See the preceding entry for details of how the key is defined.

StopAutoFuel: Set this to ‗Yes‘ on FS2002/4 to stop automatic re-fuelling at scenery fuel boxes. With this selected

you can only increase fuel via the FS menu or by using a program or gauge which does it via FSUIPC‘s offsets.

CorrectVSsign (FS2002/4 only), or PatchSimApAlt (FS2000): These options provide one or two ‗improvements‘,

to the FS autopilot. First, for FS2000, the PatchSimApAlt option patches SIM1.SIM (the main aircraft simulating

part of FS) to correct some inaccuracy in the autopilot‘s altitude holding capability. The inaccuracy occurs when

flying Flight Levels and increases with the difference between the altimeter setting (e.g. the standard pressure setting

of 29.92‖ or 1013mb for Flight Levels) and the actual barometric pressure at sea level (QNH). This action is not

applied to FS2002 or FS2004 as it seems to have been fixed in the later simulation engines.

Second, the same option (renamed to ‗CorrectVSsign‘ for FS2002/4) corrects the vertical speed setting if it is set to

climb when the aircraft would need to descend, or vice versa. It does this by inverting the sign of the vertical speed

setting. It only does this when altitude acquire/hold is enabled, so that vertical speed control by itself is not affected.

The correction is also not applied if the target altitude is set to a value over 65000 feet—a trick used by some panels

to provide V/S controlled ascents and descents.

 12

If neither of these functions are required, set the appropriate parameter to ‗No‘. Note that the setting can be

overridden for specific aircraft which have specific FSUIPC joystick calibrations by setting this parameter differently

in that [JoystickCalibration …] section.

DisconnTrimForAP: When this option is enabled, FSUIPC disconnects the analogue elevator trim axis input to FS

whenever either the FS autopilot is engaged in a vertical mode (altitude hold or glideslope acquired), or a program,

gauge or module has disconnected the elevator axis via FSUIPC (offset 310A).

Note that the setting can be overridden for specific aircraft which have specific FSUIPC joystick calibrations by

setting this parameter differently in that [JoystickCalibration …] section.

ZeroElevForAPAlt: controls the option for FSUIPC to automatically centre the elevator input each time the

Autopilot altitude hold mode is changed (switched on or off, including AP engaged changes too). This option can be

operated inside FS on FS2004, but if needed on earlier versions must be enabled in the INI file by setting this

parameter to ―Yes‖.

Note that the setting can be overridden for specific aircraft which have specific FSUIPC joystick calibrations by

setting this parameter differently in that [JoystickCalibration …] section.

ReversedElevatorTrim: This is probably not of any real use nowadays, as all the axes can be reversed in

FSUIPC4‘s joystick calibration facilities. Best left set to ‗No‘.

Note that the setting can be overridden for specific aircraft which have specific FSUIPC joystick calibrations by

setting this parameter differently in that [JoystickCalibration …] section.

PlanLoadNoPosition: This option changes the behaviour of the FS2000/2002 facility to load flight plans into the

GPS. If you set ―PlanLoadNoPosition‖ to Yes, the FS2000 plan loader will not position the aircraft for you. Many

folks prefer this as they like to start the flight with the aircraft parked on the ramp, and taxi to the correct runway

themselves. This option is defaulted off (=No) to avoid confusing users already used to and happy with FS2000

working as it does now. Set it to ―Yes‖ if you would prefer the facility not to move the aircraft.

This option is not available in FS2004 as it is not needed—FS2004 provides such an option in any case.

MagicBattery: This reduces the discharge rate on the battery, keeping the voltage from dropping. If this is set ‗Yes‘

or 0 then no drop is allowed. If set ‗No‘ or 1 then the battery discharges normally. Any value from 2 to 999 acts as a

divisor on the discharge rate, so 2 makes the battery last twice as long, and so on. This is designed to assist in getting

over the apparent error in the airliners, which makes it discharge far too quickly before engine start.

ExtendedJoyCalib: This simply enables the extra three Joystick calibration pages in the Settings and Options

display. The actions carried out are not affected, only whether the settings are shown or not.

N1N2asFS98: Set this option (add the line if it isn‘t there) to ―yes‖ if (and only if) you want FS2000 to start up with

an FS98 jet aircraft with Engines off. It makes FSUIPC assume that the N1% and N2% values are provided as they

are in FS98 (i.e. reversed), rather than as they have been ‗corrected‘ in FS2000 for FS2000 aircraft. FSUIPC does do

this automatically, but it cannot differentiate the two cases until the engines are running.

This is not really of any use in FS2002, as FS98 aircraft transferred to FS2002 seem either not to work correctly in

any case, or to be ‗converted‘ to FS2002 standard via parameters generated in the Aircraft.cfg file. It is not provided

in FS2004.

AutoTuneADF: This controls an option to ‗auto-tune‘ the ADF radio. If this is enabled, when FSUIPC detects no

NDB signal being received it alternates the fractional part of the ADF frequency between .0 and .5 every seven

seconds or so. This allows external cockpits built with only whole-number ADF radio facilities to be used in areas

like the U.K. which have many NDB frequencies ending in .5.

AxisCalibration: This facility deals with inputs to the rudder, aileron and elevator axis offsets, via the FS98 offsets

to the IPC interface. These values are subject to a range check, and always scaled down if this range is exceeded. The

correct limits are –16383 to +16383.

Additionally, axis inputs can be scaled upwards to meet this extent, if required. To do this set:

 AxisCalibration=Yes

By default with this option selected some flattening is applied to the values so that the response is not so vigorous

near the centre (0). To calibrate the axes you must move all three controls to their maximum extends on each fresh

load of FS2000.

Alternatively, you can set "AxisCalibration=Set". This operates as above, but adds a new section to the .ini file, thus:

 13

[AxisCalibration]

 Rudder=<max>,<slope>

 Elevator=<max>,<slope>

 Aileron=<max>,<slope>

The <max> values are those which are scaled to 16383, whilst the <slope> values control the amount of flattening in

the centre: from 0 (no flattening) to 100 (maximum flattening. note that the flatter the centre, the steeper the sides, so

it is always a compromise.

The default ―slope‖ values are 50, 40, 40 respectively, for the three axes.

Once this calibration has been done and the section in the ini file produced (or added manually), there is no need to

re-calibrate on each new FS reload. The "AxisCalibration" parameter resets automatically to "Yes".

Note that the "AxisCalibration=No" setting is equivalent to setting "Yes" and adding the section:

 [AxisCalibration]

 Rudder=16383,0

 Elevator=16383,0

 Aileron=16383,0

However, if these values are exceeded during an FS2000 session, the new maxima will replace any values in the ini

file.

MainMenu=&Modules: This parameter controls which main (top-level) menu entry in Flight Simulator is used to

access the FSUIPC Settings screen. The default, as shown here, is the Modules menu. Note the ―&‖ character, which

tells Windows which letter in the name is used for the keyboard accelerator (as in ―Alt+M‖ here).

If you prefer to have FSUIPC accessed through, say, the Flights menu, then you can change this to &Flights. Note

that the spelling and ―&‖ characters must match whichever menu you are adding to, else a new one will be created

instead. Foreign language versions of FS will have differences too, remember.

You can have FSUIPC Settings accessed directly from the top level menu if you like. To do this simply choose a

unique menu name and add ―…‖ to the end. FSUIPC will take this to mean that you want direct access. For example:

 MainMenu=FS&UIPC …

Will create a top-level menu entry ―FSUIPC …‖ which will lead directly to the Settings window. The accelerator

here is U, because the F is already taken (for ―Flights‖)—the Settings window can then be obtained very quickly by

just Alt+U.

SubMenu=&FSUIPC …: This supplies the name and the keyboard accelerator character (the one following the

―&‖) which will appear in the selected ‗Main Menu‘ entry (see previous item) and which leads directly to the

FSUIPC Settings window. If the Main Menu itself is made to lead directly to the Settings this entry is ignored.

FixWindows: set to ‗Yes‘ prevents cockpit windows resizing and moving. This facility can also be used in FS98 but

as there‘s no in-program options for FS98 you must make sure the panel and scenery windows are exactly as you

want them to be before setting this parameter.

SmoothPressure: set to ‗Yes‘ to smooth barometric pressure changes by limiting the changes from external

programs to 1 millibar ever so many seconds. The number of seconds is given by PressureSmoothness which

defaults to 5 and can have any value from 1 to 30, inclusive. On FS2004 this option is only applied to global weather

and pressure set by external weather programs.

SetStdBaroKey: This allows you to assign a keypress which, when used, will set the ‗Kollsman‘ window on the

Altimeter to the standard pressure, 29.92‖ or 1013.2mb. This is used when flying ‗flight Levels‘.

The keystroke is defined as in Flight Simulator‘s own controls, and documented in my FS98 and FS2000 Controls

documents (and listed below, in the Button Programming section). For example, I use (and recommend)

"CTRL+SHIFT+B" which would be

 SetStdBaroKey=66,11

The same control codes are used in FS2002.

TCASid: FSUIPC supplies data on the FS2002 additional ―Artificially Intelligent‖ (A.I.) aircraft flying in the

neighbourhood, for external TCAS or mapping programs to display. Normally the aircraft is identified by its Airline

and Flight number, if there is one, otherwise by the Tail number.

 14

However, other types of identification string can be chosen instead. In particular, the optional labels placed on the

aircraft by FS in the scenery view only shows tail numbers, so if you want to match them up you‘d want to set this

parameter to ―Tail‖. The full list of options here is:

 Flight for airline+flight, or tail number, as available (default)

 Tail for tail numbers only

 Type for the ―ATC type‖, generally only the Make

 Title from the aircraft title (in the .CFG file), truncated to 17 characters

 Type+ for the type as above, truncated if necessary, plus the last 3 characters of the tail number

 Model for the model description

The utility ―TrafficLook‖ is supplied—you can see the difference in its display.

TCASrange: Sets the maximum range at which FS2002 A.I. aircraft will be added to the tables for external TCAS

applications. This defaults to 40 nm. A value of 0 turns off the limit altogether. This parameter can be adjusted in the

Technical page of the FSUIPC Options whilst FS2002 is running.

FixedTCASoptions=Yes can be added by the User if the above two settings are to remain locked, unchangeable

except by editing here, in the INI file.

TrafficScanPerFrame: Sets the rate at which FSUIPC scans the AI traffic data for changes. This is a percentage (0–

100) per flight simulator frame. The default is 10, which means it will take 10 frames to update all aircraft. You can

try higher values if you want to see more fluidity in AI traffic movement, assuming the application itself can scan

fast enough. The only penalty from higher values may be a performance hit on Flight Sim, or your application, but

many modern PCs may allow even 100% updates per FS frame without measurable degradation. If you set this to 0

you will get no AI aircraft at all, though this will not stop externally injected data (e.g. from AIBridge).

Note that since FSUIPC version 3.51 the proportion of AI traffic processed in each frame will rise if the queue of AI

traffic controls (those sent by programs such as Radar Contact, AI Smooth and AI Separation) builds up. This is

automatic and is designed to keep those queues down.

TrafficControlDirect: This only applies to FS2004, where is will normally be left to its default value ‗Yes‘. It tells

FSUIPC to send all AI traffic commands directly they are received, rather than queue them up and send them on the

next frame-based traffic scan. It results in more effective and efficient control of AI traffic especially in critically

busy periods. Only set this parameter to ‗No‘ if it seems to resolve any stability problems on your FS2004

installation.

SetSimSpeedX1: optionally sets a Hot Key which when used resets the simulation rate to x1 (i.e. normal). The

keystroke is defined as in Flight Simulator‘s own controls, and documented in my FS98 and FS2000 Controls

documents (and listed below, in the Button Programming section). The same control codes are used in FS2002. As

an example, for "CTRL+SHIFT+S" this would be

 SetSimSpeedX1=83,11

ThrottleSyncToggle: sets a Hot Key which operates a facility to make all throttle inputs, for any engine, affect the

throttle inputs to all engines. It‘s a toggle function—if it is on then using it again turns it off. If you are only using a

single throttle then this won‘t make a lot of difference except that every time you use toggle it FSUIPC will make the

throttle selection (i.e. the keypress E+1 … etc) apply to all engines. The keystroke is defined as in Flight Simulator‘s

own controls, and documented in my FS98 and FS2000 Controls documents (and listed below, in the Button

Programming section). The same control codes are used in FS2002 and FS2004. As an example, for

"CTRL+SHIFT+E" this would be

 ThrottleSyncToggle=69,11

ThrottleSyncAll: controls whether the Throttle Sync Hot Key operates on the Prop Pitch and Mixture values as well

as throttles. This has no effect on jets and helicopters.

FixControlAccel: This, if enabled intercepts all controls, and changes the elapsed time location inside FS before

forwarding every different (non-axis) control, so that the time elapsed looks large enough for the control not to be

accelerated. If it sees successive identical controls then it leaves them, so they can be accelerated as normal. [This

should not be used by keyboard flyers!]

For a fuller explanation, please see the User Guide.

TimeForSelect: [FS2004 only] This specifies the number of seconds for which the SELECT controls (normally

assigned to main keyboard keys 1–4) should remain operative for controls that need them (like Engine select, or

Aircraft Exit toggle), despite the intervention of other, different, controls. This only operates when the

 15

FixControlAccel option is enabled. To disable this, set the time to 0. Also note that this does not influence the

similar automatic facility for the FS pushback, which, on FS2004 only, ensures that the pushback direction remains

selectable irrespective of the FixControlAccel option.

SpoilerIncrement: This controls the amount the FSUIPC ―Spoiler inc‖ and ―Spoiler dec‖ change the spoiler position

on each use. The default is 512, giving 32 steps from spolers lowered (0) and fully deployed (16383).

TrapUserInterrupt: Another option for FS2002 only, defaulted on, this is provided to trap certain ―User Interrupt‖

occurrences, which cause the ―End Flight?‖ dialogue to appear on screen whilst flying. Apparently these can occur in

certain configurations if the aircraft is over-stressed or has some minor damage inflicted by, for example, taxiing

over rough ground.

NavFreq50KHz: It seems that, in FS2002 for the first time, the NAV radios are tunable to 25KHz frequencies, like

the COM radios. Thus the increment/decrement is 25KHz instead of 50KHz. This can cause some difficulty with

cockpit designs suited to the current actual 50KHz spacing, so FSUIPC provides this option to force NAV radio

frequencies to abide by 50KHz spacing (.00 .05 .10 .15 … .95).

AileronSpikeRemoval

ElevatorSpikeRemoval

RudderSpikeRemoval: These control the options to ignore any aileron/elevator/rudder signals specifying maximum

possible deflection. It is mainly useful in conjunction with Wilco‘s 767PIC on FS2002, which seems to cause these

spurious ‗spikes‘ on the elevator occasionally, and on the rudder when flown with the yaw damper switched off.

ClockSync: This facility, applicable only to FS2002 and FS2004, and kindly donated by José Oliveira, compensates

for the odd phenomenon of FS losing time. It synchronises the seconds values with that of your PCs system clock. It

is defaulted off (=No).

SmoothIAS: This option acts only on the Indicated Air Speed offered to external programs through the IPC

interface—in other words, the DWORD at offset 0x0580. It smooths the value by automatically providing a moving

average of 23 samples taken at roughly 55 mSec intervals. This appears to overcome the ratcheting effect which can

be seen on steep climbs and descents. (This is enabled by default since version 3.04).

WhiteMessages: This controls an option to forward external application ―Adventure messages‖ to FS for display in

white on green instead of red. This only applies to non-scrolling messages. If AdvDisplay.dll is also installed and

not trapping and diverting the messages anyway, the white message option needs AdvDisplay version 2.11 or later.

InitDelay: This controls the timing of FSUIPC‘s subclassing of the main FS window. This has always defaulted to

3000 (milliseconds) for 3 seconds, but now in FS2004 only it defaults to 0 in an attempt to reduce the probability of

black screen problems in FS when switching video modes. [This parameter is not shown in the INI file when

defaulted].

WeatherReadInterval: This controls the frequency at which FSUIPC reads the weather in FS2004, in order to

populate the many weather variables accessible to applications. The interval actually controls the number of FS2004

frames which elapse between each read, and is given as an exponent of 2. The default value is 4 which means 2^4 or

every 16 frames. A value of 0 would update the weather on every frame, and a value of 32 would effectively stop all

updating.

Note that this also controls the rate at which any weather is updated using the old FS98 or AWI interfaces. However,

it does not alter weather setting capabilities using the New Weather Interface (NWI).

MoveBGLvariables: By default, on FS2004, FSUIPC moves the five BGL user variables (addressed in BGLs by

312 to 31A) from their new location in G3D.DLL back into their old place in GLOBALS.DLL, so they can again be

used to interaction between scenery and programs. It is not thought that there are any undesirable consequences of

this, but in case there are, this parameter is provided. Set it to ‗No‘ to stop the movement.

UseProfiles: By default this will be set to ‗No‘, for backward compatibility, but set it to ‗Yes‘ if you want to use the

User Profile facilities rather than individual aircraft specific assignments and calibrations. The Profile facility has its

own chapter in the User Guide.

ShortAircraftNameOk: This is normally set ―no‖ to make sure all aircraft- or profile-specific Keys, Buttons and

Joystick Calibration settings only apply to the specific aircraft which was loaded at the time they were assigned.

However, if you have several ―paints‖ and which the settings to apply to all, you need to set this parameter to ―yes‖

then shorten the aircraft name either in the [Profiles] section, if you are using profiles, or else in the [Axes.<name>],

[Buttons.<name>], [Keys.<name>] and [JoystickCalibration.<name>] section headings in the INI, as needed. The

same facility could, for example, give all aircraft starting ―Boeing‖ one set of assignments and all those starting

―Airbus‖ another.

 16

Further, you can set ShortAircraftNameOk=Substring to make FSUIPC match the shortened <name> in the INI

section headings in any part of the full aircraft name, not just at the beginning.

TimeSetMode: In FS2004 FSUIPC intercepts writes to the time locations (for instance, by programs such as

FSRealTime) and uses them to issue the appropriate commands to FS to change the time. This makes the new time

correctly propagate through the AI system (and may trigger a traffic reload), and avoids subsequent otherwise

inexplicable hangs.

Designing this in a way which avoids the problems with AI traffic reloading causing hangs, yet doesn‘t create too

many unwanted pauses for reloading traffic whilst flying, has proved quite a thorny problem. So, a reasonable

compromise has been provided as the default solution, but options are also available to allow you to select one of two

other modes.

―TimeSetMode=Partial‖ is the default mode. With this set, any time change of more than one minute, or any

change at all to the hour, day or year, results in propagation through FS and will therefore trigger at least an AI

traffic reload, maybe more.

The other options, selectable only by editing the FSUIPC.INI file, are ―TimeSetmode=On”, where all changes to

minutes, hours, day and year are propagated throughout FS, and ―TimeSetMode=Off”, where no changes to any of

the date/time values are propagated at all. This last is how all versions of FSUIPC before 3.465 behaved.

Note that in order to try to prevent AI Traffic loading hangs when instigated by using the FSUIPC traffic density

controls, FSUIPC propagates the complete Zulu time and date immediately before reloading the traffic if the new

density value is higher than the old value.

ZapSound: This defines the sound to be used when the FSUIPC control for AI traffic deletion (the ―Traffic Zapper‖)

is successfully applied. This must be the name of a WAV file in the FS sound folder, the default being ‗Firework‘.

If you do not want a sound just set it to ZapSound=None. However, the reason for the sound is so that you know

something has been Zapped. FSUIPC cannot tell what you can see, and the aircraft which is zapped may not be in

your display so you may not see it disappear.

ZapAirRange=1.5

ZapGroundRange=0.25

These control the range of operation of the AI aircraft zapping facility. The units are nautical miles. Air and Ground

refer to the user aircraft position, not the target. Note that you cannot change the acceptance angle explicitly. It is

adjusted automatically, in linear inverse proportion to the change in the range—so with a larger range you would

need to point the aircraft nose more accurately.

ZapCylinderAltDiff=n (where n is the maximum altitude difference), can be added to change the mode of the

airborne Zapper. With this added, the target for zapping is the nearest aircraft to the airborne user which is within the

upright cylinder of radius ZapAirRange and has a difference in altitude of n feet or less, including those on the

ground below.

MouseWheelTrim: This records the setting of the ‗Use mousewheel as trim‘ option on the Miscellaneous options

tab. By default it is set to ‗No‘.

AxisInterceptsIfDirect=No: By default, FSUIPC does not intercept FS axis controls which have been assigned in its

Axis Assignments to be sent ‗direct‘ to calibration. This would not normally matter either way, as axes assigned

directly should have been disabled in FS so no such controls should arrive. However, some add-on aircraft panels

(most notably that for the LevelD 767) use some of the standard axis controls to operate the autopilot. If the FSUIPC

calibration and slope changes are then applied to the values it would upset the A/P control.

Just in case there are installations which do need both direct and indirect calibration to work on the same axis

controls, this bypass can be stopped by changing the AxisInterceptIfDirect parameter in the INI file from ‗No‘ to

‗Yes‘.

 17

Logging facilities

These options can be controlled ‗on the fly‘ from the FSUIPC dialogue window (select the Modules menu them

FSUIPC, ALT, M then F). FSUIPC always produces a text file called FSUIPC.LOG in the Modules folder. Entries in

the log are timed, from the start of the FS session. The time is in milliseconds and appears on the extreme left of each

line.

Please use the logging facilities to check things before reporting problems or omissions in FSUIPC, and supply an

appropriate log file (or extract) properly zipped up with such reports.

Note that log files can get very large if all the options are turned on. Keep test flights short. You can read log files

whilst flying provided you use a reader which shares access (like recent Notepad programs), or use the

‗NewLogKey‘ described below to close logs and start new ones.

All Log control parameters go into the [General] section of FSUIPC.INI. None are included by default.

LogWeather=Yes: Logs weather data. This will log incoming data, set by a weather control program, on FS98 as

well as FS2000–2004. On FS2000–2004 you will also get the actual weather data constructed by FSUIPC in FS

terms. Then you get the weather read out by FSUIPC and lastly placed back into the globals for applications to read.

Incoming weather control data on the Advanced Weather interface for FS2000–2004, and on the New Weather

Interface for FS2004, is also logged in full.

LogWrites=Yes: Logs the global ‗writes‘ received from applications, with global offset address and data size, plus

all bytes of data. The offsets shown are the ones used by the application. [Take care: the Log file may get very

large!]

LogReads=Yes: Logs the global ‗reads‘ received from applications, with global offset address and data size, plus all

bytes of data. The offsets shown are the ones used by the application. [Take care: the Log file may get very large!]

LogEvents=Yes: In FS2004 only, this option logs all FS ―key events‖, other than those from axis controls. This can

be very useful to those seeking to understand the actions of their buttons and keys, or to view the sorts of things some

of the more complex panels do, repeatedly, every second.

LogAxes=Yes: Also in FS2004 only, this logs just the axis input events.

LogButtonsKeys=Yes: This logs most Keyboard events (KEYUPs only when programmed), and all button

operations. The logging can get quite long, but it will be very useful when trying to analyse exactly what your

complex FSUIPC button or key programming is doing.

LogExtras=Yes: This logs additional technical data about the inner workings of FSUIPC, the nature of which will

vary from time to time according to needs. There is nothing here that would be of interest to the user, but when

investigating problems users may be asked to enable it so that the logs returned can be more meaningful in solving

them. Do not fly extensively with this option enabled or you will fill up your disk and probably compromise the

simulator‘s performance!

Additional ―Extras‖ logging facilities are available if the parameter Debug=Please is incorporated into the INI file.

This changes the Extras logging flag into a numeric value that ranges from 0 (off) to 4095. In this range the ‗1‘ bit

(i.e. any odd number) provides the normal Extras logging, and all others are used for specific debugging or

performance measuring log entries which will vary from time to time. This facility is for use under instruction only.

NewLogKey, StopLogKey: These allow you to assign keypresses to close the current Log file (if logging was

enabled), and start a new one. The ‗NewLogKey‘ will carry on with the same logging options, whilst the

s‘StopLogKey‘ will revert to default logging (the minimum). Between them these two keys give complete control

over the logging. (Note that both actions are also available in the FSUIPC dialogue window).

The current log file is always called FSUIPC.LOG. The others are named in numerical order FSUIPC.1.LOG, …

2.LOG, … etc.

The keystrokes are defined as in Flight Simulator‘s own controls, and documented in my FS98 and FS2000 Controls

documents (and listed below, in the Button Programming section). For example, I use ―Shft+Ctrl+L‖ and

―Shft+Ctrl+O‖ (for ―Log‖ and ―Off‖ respectively) which would be

 NewLogKey=76,11

 StopLogKey=79,11

The same control codes are used in FS2002 and FS2004.

 18

Monitor facilities

FSUIPC can monitor, on every FS frame, up to four values (or the same values in different formats, if needed), and

display or log them when they change. For each value to be logged you enter or select four things:

Base: which will normally be fixed at ‗IPC‘. The base is the name of the area of data from which the value shown

will be taken. All the variables supported by FSUIPC through the IPC interface are at offsets relative to the IPC base.

Only in FSUIPC debug mode, or in specific Beta versions, will other Base values be selectable.

Offset: which identifies the position of the value relative to the Base. This is a hexadecimal number, normally in the

range 0000 to FFFF. Some of the non-IPC bases may allow larger offsets. For offsets to standard IPC variables see

the Programmers Guide in the SDK.

Type: this defines the type of variable, so that the formatting in the display will show something meaningful. The

types currently supported are tabulated below.

Type Description C type Type Description C type

S8 Signed 8-bit value, -128 to +127 signed char UIF32 4 byte Integer & Fraction: 16-bit

fraction followed by 16-bit unsigned

integer

Uses an

unsigned int

U8 Unsigned 8-bit value, 0 to 255 unsigned

char, or

BYTE

 SIF64 8 byte Integer & Fraction: 32-bit

fraction followed by 32-bit signed

integer

Uses an

unsigned
then signed

int

S16 Signed 16-bit (2 byte) value short UIF64 8 byte Integer & Fraction: 32-bit

fraction followed by 32-bit unsigned

integer

Uses two

unsigned

ints

U16 Unsigned 16-bit (2-byte) value unsigned

short, or

WORD

 FLT32 32-bit (4-byte) standard floating point

value
Float

S32 Signed 32-bit (4-byte) value int FLT64 64-bit (8-byte) standard floating point

value
Double

U32 Unsigned 32-bit (4-byte) value unsigned int,

or DWORD
 ASCIIZ A string of single-byte characters

terminated by a zero byte. A length an

limited number of these is shown

Char[], or

ASCIIZ

SIF16 2 byte Integer & Fraction: 8-bit

fraction followed by 8-bit signed

integer

Uses a short SA16 16-bit signed Angle in FS format (-180

degrees = max+1)

Uses a short

UIF16 2 byte Integer & Fraction: 8-bit

fraction followed by 8-bit unsigned

integer

Uses an

unsigned

short

 UA16 16-bit unsigned Angle in FS format

(360 degrees = max+1)

Uses

unsigned

short

SIF32 4 byte Integer & Fraction: 16-bit

fraction followed by 16-bit signed

integer

Uses an int SA32 32-bit signed Angle is FS format Uses int

 UA32 32-bit unsigned angle in FS format Uses

unsigned int

Hex: For most numerical values the sensible display will be decimal. However, for the plain fixed point integer

values (S8, U8, S16, U16, S32 and U32) you may want to view them in hexadecimal instead. This is likely for bit-

oriented switch or flag collections, and of course the binary-coded decimal (BCD) values such as NAV and COM

frequencies. The Hex checkbox can be checked for these numeric values only.

Then you have to tell FSUIPC how you want these monitored values to be displayed. There are four options, and any

or all of these can be selected:

Normal Log File: Changes in the monitored values are listed in the FSUIPC.LOG for later viewing.

Debug String: The same messages are sent to a debugger or debugging monitor such as DebugView, for viewing in

parallel to the FS actions. Note that you may have difficulty running a debugger with SafeDisk-protected versions of

FS (FS2000 and FS2004).

AdvDisplay: The monitoring is done by using up to 4 lines in the erstwhile FS adventure display line. The appears

near the top of the screen, and will show 4 lines well in FS2004, but not in earlier releases—they all end up on one

line. The better alternative is to use my AdvDisplay.DLL module and have the four lines in a window of your sizing

and positioning, or even on a separate PC via WideFS and ShowText.

 19

FS Title Bar: The messages replace the FS title altogether. Only one is shown at a time, so this is only useful for

monitoring one value.

If the value requested is not available at any time the result will show ―<invalid>‖. When looking at some Engine or

other aircraft things, this can happen transiently, for instance whilst an aircraft is being loaded.

Al the monitoring selections are saved in the FSUIPC.INI file, in a section called [Monitor].

JoyNames

The INI file section [JoyNames] is fully described in its own chapter in the User Guide.

Profiles

If you opt to use the Profile facilities, to have different button, key, axis and calibration settings for a number of

types of aircraft (rather than specific named aircraft), then FSUIPC4 will create [Profile.<name>] sections in your

INI file. These take the name of the profile you request, for example ―Jets‖, ―Props‖, ―Helos‖, and simply contain a

list, in the usual 1=<name>, 2=<name> ... format, of those aircraft names which belong to the particular profile,

according to your assignments. Those aircraft names may be the full names, as when you assign in the FSUIPC4

options dialogue, or can be shortened or substring names, according to the ―ShortAircraftNameOk‖ parameter

already mentioned.

Button Programming

FSUIPC‘s options dialogue provides a page for programming button in all the main ways. Here we look at how this

programming is encoded in the FSUIPC.INI file, and how the programming can be extended to provide multiple

keystrokes and controls for a button, mixed if required, and to provide compound (conditional) actions—ones

depending on other buttons, switch settings and even previous keyboard presses. There are even facilities to make

Button actions depend upon values in offsets from the FSUIPC IPC interface, which really provides a wealth of

possibilities (for that part you will need to get the FSUIPC SDK too, as the offset listings are provided in that

package, in the Programmer‘s Guide).

FSUIPC reloads all Button parameters each time the aircraft is changed in Flight Simulator, so you can edit theses

and test them out without having to reload Flight Sim every time.

Before embarking on the programming itself, four global parameters need to be described. These won‘t appear in the

INI file unless you add them, and you only need to add them (in the main [Buttons] section) if you need something

other than the defaults:

InitialButton: This controls a facility to make FSUIPC perform one-off actions when FS is first loaded and running

(i.e. actually ready to fly). This is by programming a real or imaginary Button. Simply add the line

―InitialButton=j,b‖ to the [Buttons] section. The values of j (0–255) and b (0–31) can specify a real joystick and

button, or a non-existent one, it doesn‘t matter. Real ones can have an action assigned on-line, in the Buttons option

page, but multiple actions for any button, real or not, can be accomplished by editing the INI file as described here.

IgnoreThese: This can be used to list a number of buttons which are to be ignored by FSUIPC in the Buttons &

Switches tab. This is to deal with faulty button signals which are repeating without control and thus preventing the

others from being registered on the screen ready to program. The parameter takes this form:

IgnoreThese= j.b, j.b, ...

listing the joystick number (j) and button number (b) of each button to be ignored. To make it easy, you can edit the

INI file whilst in the Button assignments dialogue and simply press ―reload all buttons‖ to activate the changes.

Note that the action of ignoring buttons only applies to those numbered 0–31 on each possible joystick (not any

―POV‖ hats), and they are only ignored in the dialogue—if they are already assigned the assignment will still be

effective.

EliminateTransients: This can be added, and set to ‗Yes‘, to eliminate short (transient) button press indications.

This is intended to help deal with some devices which create occasional spurious button press signals. It operates

only with locally-connected joysticks (but not EPIC or GoFlight devices).

Note that enabling this option may mean you have to consciously press buttons for slightly longer. It depends on the

PollInterval (below). A ―transient‖ button indication is one which only exists for one poll, so a real press would

 20

have to last up to 50 mSecs (twice the default poll interval) to be sure of being seen (more, allowing for variations in

the polling due to processor/FS activity). You may find you need to adjust the PollInterval.

PollEpicButtons=Yes: Set this to No if you experience any difficulty getting FSUIPC to operate correctly on a

system with an EPIC installed but which you do not want to program via FSUIPC‘s ―Buttons‖ page.

ButtonRepeat=20,10: The first number here controls the button repeat rate, when repeating is enabled for a specific

button. The range is 1 to 100 and is the number of repeats per second. Note that the higher rates may not actually be

achievable. If you want no limit placed, allowing the repeats to go as fast as they can under each circumstance, set

this parameter to 0. This can be very fast, so beware!

Note that it is unlikely that this rate will be exactly maintained as it is subject to FS performance variations,

depending on the action being repeated, but it acts as a good target control value.

The second number gives an initial delay, before repetitions begin. This is in terms of how many potential repetitions

to miss, so with 20 repeats per second, 10 would give a delay of half a second. This allows the same button to

operate to increment/decrement a value just once, or, by holding the button down, repeat until released.

A value of 0 for the initial delay value means there will be no delay before the repeats start -- this is how FSUIPC

has been until the delay facility was added.

PollInterval=25: This parameter tells FSUIPC how often to read (―poll‖) the joystick buttons. The time is in

milliseconds, and the default, as shown , is 25 (40 times a second) for Windows XP, but 50 (20 times per second) for

other Windows versions—the difference is to get around problems arising from the earlier USB drivers in those

systems..

A polling rate of 0 will stop FSUIPC4 looking at buttons altogether, and in fact this will remove the Buttons &

Switches tab from the FSUIPC4 options. This may come in useful for checking whether a rogue joystick driver is

causing problems.

A polling rate of 40 per second is more than adequate for all normal button programming. It is only when you come

to the more advanced uses that you may want to change this. Rotary switches, for instance, may give pulses so fast

that some are missed at such a rate.

Any value from 1 millisecond upwards can be specified, but those from 50 upwards result in a specific number of

―ticks‖ (55 mSecs) being used. i.e. 40-82 actually result in 55 (1 tick), 83-138 in 2 ticks, and so on. Ticks are also

approximate, in that they depend on the other activities and loading upon FS.

Values 1–59 milliseconds are actually handled by a separate thread in FSUIPC and give more accurate results, but

note that polling the joysticks too frequently may damage FS‘s performance, and may even make its response to

joystick controls more precarious. No truly adverse effects have been noticed during testing on Windows XP, but it

is as well to be warned. If you think you need faster button polling, try values in the range 10–25, and make sure that

FS is still performing well each time.

NOTE: Do not use a polling interval lower than 50 if you are not using Windows XP, as you them may experience

odd hangs or other strange effects in Flight Simulator.

Note that PFC‘s ―emulated‖ joysticks (those with numbers 16 upwards) are polled four times more frequently in any

case—this is done because there is no overhead in doing so—there are no calls to Windows but merely some data

inspections. GoFlight buttons (joystick numbers even higher) aren‘t polled at all—FSUIPC receives a call from the

GoFlight driver interface (GFDev.DLL) whenever an event occurs.

FORMAT OF BUTTON DEFINITIONS

The button programming is saved in sections in the INI file. For globally operative buttons this is called [Buttons].

For aircraft-specific buttons it is [Buttons.<aircraft name>]. Up to 2048 separate entries defining button actions can

be included in each section, normally numbered sequentially from 0, provided that the total of the definitions in the

Global section and the largest aircraft-specific section is not greater than 2048.

If the [General] parameter ShortAircraftNameOk is set to Yes or Substring, the <aircraft name> part of the section

heading can be abbreviated (manually, by editing the INI file) so that it applies to more than one aircraft. With the

‗Yes‘ option, FSUIPC will automatically select the section with the longest match. The ordering of sections in the

INI file is not relevant. However, with the ‗Substring‘ option it will select the first section with a substring match –

there‘s no concept of ―longest match‖ in this case.

The basic format of each entry in the Buttons section is as follows:

 21

For keypresses:

 <Entry number> = <Action><Joy#>,<Btn#>,K<key>,<shifts>

and for controls:

 <Entry number> = <Action><Joy#>,<Btn#>,C<control>,<parameter>

The format of the parameters becomes more complex for conditional actions, so they will be described later.

The <Entry number> is not material most of the time—except in sequences for single button presses/releases. It is

just a sequence number from 0–2047 (but limited to a total of 2048 entries for the general section plus any one

Aircraft-specific section).

Each entry must have a unique entry number, and the actual order is only important when multiple actions are

defined for the same button. FSUIPC will retain the numbering, and hence the order which the number (not the line

position) defines.

You can add comments following a semicolon (;) at the end of the line, and these will be retained. You can also

insert lines containing only comments, but they need an <Entry number> too, otherwise they may not retain their

relative position. Comments can contain up to 63 characters—longer ones will be truncated if and when the

[Buttons] section is re-written by FSUIPC.

<Action> is a single letter denoting the action being defined:

P Pulse the key press or control: i.e. do not hold the keys down whilst the button is held

down. This is always the case for controls, and should always be the case for any key

presses involving ALT key usage, because once the FS Menu is entered FSUIPC cannot

supply further changes like key releases.

H Hold the specified keys down until the button is released. (This doesn‘t apply to Controls

and will be treated like P in their case). Do not use this with key presses involving ALT,

for the reason just given.

R Repeat the key press or control whilst the button is kept held down. The repeat rate is

approximately 6 per second and is not adjustable. Do not use this with key presses

involving ALT, for the reason already given.

U Pulse the key press or control when the button is released.

Any button can have a U entry as well as a P, H, or R entry. Provided the button only has one P, H or R,

and/or one U entry, and that when it does have two they are either both key presses or both controls, then

the button programming can be handled entirely in FSUIPC‘s Buttons option page.

The <Joy#> identifies the joystick number (0–15 for normal joysticks, 16 upwards for PFC, GoFlight or

other future ‗emulated‘ joysticks) as displayed by FSUIPC, and the <Btn#> identifies the specific button

(0–39), again as in FSUIPC‘s display. Of these buttons 0–31 are regular buttons and 32–39 are the 8

possible POV view angles, starting forward and going clockwise every 45 degrees. (There are no emulated

POVs so for joysticks 16 and upwards the buttons numbers are always in the 0–31 range).

Note that the Joystick numbers 0–15 may be replaced be an assigned letter (A–Z, omitting I and O) if the

JoyNames facility is being used to assign joysticks indirectly, in case their real ID numbers change.

When buttons on WideFS clients are programmed, the Joystick number also includes a Client PC

number—1000 for client 1, 2000 for client 2 and so on. The client numbering is actually handled by

WideServer, which keeps a record of Client PC names and assigns them numbers in the WideServer.ini

file. You only need to worry about that when changing PCs or renaming them.

For key presses, the <key> value following the letter ‗K‘ is the virtual key code for the key to be pressed.

Here‘s a list for convenience (but note that not all of these will be usable):

 0 Null (+ Alt, Shift etc alone)
 8 Backspace
 12 NumPad 5 (NumLock Off)
 13 Enter

19 Pause
20 CapsLock
27 Escape

 32 Space bar
 33 Page Up
 34 Page Down

 35 End
 36 Home
 37 Left arrow
 38 Up arrow
 39 Right arrow

40 Down arrow
44 PrintScreen

 45 Insert
 46 Delete
 48 0 on main keyboard

 49 1 on main keyboard
 50 2 on main keyboard
 51 3 on main keyboard
 52 4 on main keyboard
 53 5 on main keyboard
 54 6 on main keyboard
 55 7 on main keyboard
 56 8 on main keyboard
 57 9 on main keyboard
 65 A

 22

 66 B
 67 C
 68 D
 69 E
 70 F
 71 G
 72 H
 73 I
 74 J
 75 K
 76 L
 77 M
 78 N
 79 O
 80 P
 81 Q
 82 R
 83 S
 84 T
 85 U
 86 V
 87 W
 88 X
 89 Y
 90 Z
 96 NumPad 0 (NumLock ON)

 97 NumPad 1 (NumLock ON)
 98 NumPad 2 (NumLock ON)
 99 NumPad 3 (NumLock ON)
 100 NumPad 4 (NumLock ON)
 101 NumPad 5 (NumLock ON)
 102 NumPad 6 (NumLock ON)
 103 NumPad 7 (NumLock ON)
 104 NumPad 8 (NumLock ON)
 105 NumPad 9 (NumLock ON)
 106 NumPad *
 107 NumPad +
 109 NumPad -
 110 NumPad .
 111 NumPad /
 112 F1
 113 F2
 114 F3
 115 F4
 116 F5
 117 F6
 118 F7
 119 F8
 120 F9
 121 F10
 122 F11
 123 F12

 124 F13
 125 F14
 126 F15
 127 F16
 128 F17
 129 F18
 130 F19
 131 F20
 132 F21
 133 F22
 134 F23
 135 NumPad Enter (or F24?)
 144 NumLock
 145 ScrollLock
 186 ; : Key*
 187 = + Key*
 188 , < Key*
 189 - _ Key*
 190 . > Key*
 191 / ? Key*
 192 ' @ Key*
 219 [{ Key*
 220 \ | Key*
 221] } Key*
 222 # ~ Key*
 223 ` ¬ ¦ Key*

* These keys will vary from keyboard to keyboard. The graphics indicated are those shown on my UK keyboard. It is possible that
keys in the same relative position on the keyboard will respond similarly, so here is a positional description for those of you without
UK keyboards. This list is in left-to-right, top down order, scanning the keyboard:

 223 ` ¬ ¦ is top left, just left of the main keyboard 1 key
 189 - _ is also in the top row, just to the right of the 0 key
 187 = + is to the right of 189
 219 [{ is in the 2nd row down, to the right of the alpha keys.
 221]} is to the right of 219
 186 ; : is in the 3rd row down, to the right of the alpha keys.
 192 ' @ is to the right of 186
 222 # ~ is to the right of 192 (tucked in with the Enter key)
 220 \ | is in the 4th row down, to the left of all the alpha keys
 188 , < is also in the 4th row down, to the right of the alpha keys
 190 . > is to the right of 188
 191 / ? is to the right of 190

The <shifts> value is a combination (add them) of the following values, as needed:

1 Shift

2 Control

4 Tab

8 Normal (add this in anyway)

16 Alt (take care with this one—it invokes the Menu)

32 Windows key (left or right)

64 Menu key (the application key, to the right of the right Windows key)

[Note that the Tab and Alt keys are denoted by opposite bits here than when used for key programming. Apologies

for this, which was a design oversight now too late to change]

If only ―normal‖ is needed, the whole parameter and the preceding comma can be omitted. Usual values are:

 9 for shift+ …

 10 for control+ …

 11 for shift+control+ …

For FS controls the <control> is a number from 65536 upwards, denoting the specific FS control number. Lists of

these can be found in my various FS controls documents. In the FSUIPC Buttons page the controls are shown by

name normally, but if you want to try a control which has no name but might do something useful for you, enter it

here, in the INI file. In the Buttons page FSUIPC will show this by number instead of name.

 23

The <parameter> for a control is optional – just omit this along with the preceding comma for most toggle/button

type controls. A parameter value of 0 will be assumed anyway.

Either or both of the <control> and <parameter> values can be provided in hexadecimal, preceded by an ‗x‘

character.

As well as the FS controls, a number of additional FSUIPC controls are available. These range from 1000 to 3000,

and also values ‗xcc00zzzz‘ (in hexadecimal) which encode the FSUIPC ―Offset‖ controls. See the list below the

discussion on ‗Keys‘ for full details.

SEQUENCES, COMBINATIONS, and MIXTURES

The Buttons page in the FSUIPC options is deliberately kept rather simple, hiding some of the programming

possibilities. By editing the INI file you can do more:

 Hold one key down whilst pressing another

 Press and release a sequence of keys

 Mix key presses and FS controls in one button operation

 Make button actions conditional on the state of other buttons (see ‗Compound‘ buttons, below)

 Make button actions conditional on values in FSUIPC offsets (see ‗Adding offset conditions‘, below)

The first three are simply done by defining the actions in separate entries, each referring to the same joystick/button

number. I‘d recommend you first use the Buttons page to get the initial action programmed (this making sure you

have the right button number), then close FS and edit the entries already made in the INI file. The only important

thing is to number the entries in sequence – preferably, but not necessarily, consecutively.

Examples:

 16=H1,2,K69,8

 17=H1,2,K49,8

Presses and holds the ‗E‘ key then presses and holds the ‗1‘ key, so both are pressed together. They are both released

(in the same order) when the button is released.

 18=P1,3,K69,8

 19=P1,3,K49,8

 20=P1,3,K50,8

 21=P1,3,K51,8

 22=P1,3,K52,8

Presses and releases ‗E‘, then ‗1‘, ‗2‘, ‗3‘, and ‗4‘ in rapid succession, selecting all Engines.

 23=P2,3,K76,24

24=P2,3,K65,8

25=P2,3,K69,8

Presses and releases ALT+L then A then E, is very rapid succession! FSUIPC leaves no delays at all between actions

when the ALT key has been used. Otherwise, as soon as it allows the processing of the keys to begin, the ALT key

combination will bring up the menu item and (in this case) dialogue, and FSUIPC will not be running and will

therefore not be able to provide the key releases. Horrible mix-ups may then ensue! <G>

This last example is a real one I am actually using. The ALT+L gets the Lago menu, the ‗A‘ selects FSAssist, and the

‗E‘ selects the Pushback with Engine Start. This puts you in the pushback dialogue, but then you are into using the

mouse, I‘m afraid. FSUIPC can help no more.

COMPOUND BUTTON CONDITIONS

Facilities are included to allow you to specify actions for one button which are dependent on the state of another

button (or more likely, switch). This by using what I call ―Compound‖ button programming—though it could equally

be ―Conditional‖ or ―Co-operative‖. Anyhow, I use the letter C in the definitions, as follows:

n=CP(+j2,b2)j,b,

n=CU(+j2,b2)j,b, ...

n=CP(–j2,b2)j,b, ...

n=CU(–j2,b2)j,b, ...

 24

Here the ‗C‘ denotes compound button checking, whilst P = pulse on pressing, U = pulse on releasing, as before.

You can also use CR in place of CP for a repeating action—the repeats continue whilst all the conditions are true.

There is no facility for the Hold action with the compound facilities.

Inside the parentheses are details of the secondary button, which must be in a certain condition for the current button

to operate:

(+j2,b2) means that button b2 on joystick j2 must be pressed ("on") for the current button action (for j,b) to

be obeyed.

(–j2,b2) means that button b2 on joystick j2 must be released ("off") for the current button action (for j,b) to

be obeyed.

The j,b, ... part is the usual button parameter, for the action of the ―current‖ button which is button b on joystick j.

You can have one condition, as shown above, or two, or more (up to 16 in fact), like this:

 n=CP(+j2,b2)(+j3,b3)j,b,

where, now, both the parenthesised conditions must be met for the ‗j,b‘ button action to result in the defined event.

The conditions can be made to apply not to the current state of a button, but to the state of a ‗flag‘ that is set and

cleared by a button (or even a keypress). For every possible ―normal‖ button (16 joysticks x 32 buttons = 512

buttons) FSUIPC maintains a ―Flag‖ (F). Each time any button is pressed (goes from off to on) FSUIPC toggles its

flag. This makes the buttons flag a sort of ―latching‖ switch. You can test it in any parenthesised condition by

preceding the condition by F, thus:

 N=CP(F+j2,b2) …

This says the rest of this parameter is obeyed if the Flag associated with j2,b2 is set. A condition (F–j2,b2) tests for

the Flag being clear. Note that the actual current state of the button j2,b2 is not relevant. All that matters is whether it

last left its Flag set or clear.

None, either or both conditions in a multiple-conditioned setting may be on Flags.

These Button Flags can also be set, cleared and toggled by three special FS controls, Button Flag Set (C1003),

Button Flag Clear (C1004), and Button Flag Toggle (C1005). In all three cases the Joystick (0–15 only) and

Button (0–31) referenced is given in the Parameter, by a value calculated as:

 256 * J + B (for example, Joystick 15, Button 31 would be 3871).

These three controls are listed in the FSUIPC options drop downs for assignment in both the Buttons and Keys

pages, so you can program them there, or here in the INI file. With these themselves as controls resulting for

conditional button actions, you can influence conditions for button actions in a whole multitude of ways.

One point to note: since you can use the keyboard or other compound button actions to set, clear or toggle the flags,

the actual button for which the Flag is assigned does not actually need to exist!

Okay. Now what does this really mean? Some simpler examples will suffice here. I leave it to the more imaginative

amongst you to come up with some really complex applications! <G>

First, it means that you can assign multiple uses to any number of buttons by making them conditional on a number

of others. For example, a 12-position latching rotary switch could be wired to operate buttons 1 to 12 on joystick 1.

Then for any other button I can program 12 different actions. For example, button 0,3 could have twelve different

actions assigned, like this:

1=CP(+1,1)0,3, ...

2=CP(+1,2)0,3, ...

3=CP(+1,3)0,3, ...

...

12=CP(+1,12)0,3, ...

and so on. For example, you may have a set of assignments for ground operations, a set for take-off, a set for climb, a

set for cruise, and so on.

Second, to economise sensibly on the use of buttons, where you really need a toggle you can make any button toggle

between two actions by using a flag as a condition. For example, suppose your button is Joy 11, button 3, and a spare

flag (a button on joysticks 0-15 not otherwise used) is 15, 2. Program your button with three lines in FSUIPC (the

 25

numbers on the left need to be sequential with whatever's there already, but I'll assume you have no others so will

start with 1):

1=P11,3,C1005,3842

This says execute Control 1005 whenever your button is pressed. Control 1005 is "Button Flag Toggle". The

parameter '3842' identifies the Flag: 256 x joystick 15 + button 2. So, this flag will now alternate between being set

and clear each time you press the button.

2=CP(F+15,2)11,3, ...

This tells FSUIPC what to do if the button is pressed AND the flag is set. Replace the ... part by the Control number

and parameter for one of the actions you need.

3=CP(F-15,2)11,3, ...

Similarly, this tells FSUIPC what to do when the button is pressed and the flag is not set.

Third, you can now program those two-phase type rotary switches, the ones where turning the spindle one way gives

pulses on two lines phase shifted one way, and turning the spindle the other way gives the opposite phase

relationship.

Say the inputs from the rotary are on Joystick 1, Buttons 1 and 2. When B1 is ON and B2 goes from off to on, then

the spindle has turned one way. When B1 in ON and B2 goes from on to off, the spindle has turned the other. That is

the simplest example:

1=CP(+1,1)1,2, ... turn direction 1 action

2=CU(+1,1)1,2, ... turn direction 2 action

You can also have double speed action, operating on every off to on and on to off change of B2. Just add two more

conditions:

3=CP(–1,1)1,2, ... turn direction 2 action (B2 goes off to on when B1 is off)

4=CU(–1,1)1,2, ... turn direction 1 action (B2 goes on to off when B1 is off).

Since the whole thing is completely symmetric (there is no reason why B1 should control B2, it could also be the

other way around), you can actually program it to act on ALL edges of both buttons, by adding another 4 conditions:

5=CP(+1,2)1,1, ... turn direction 2 action (B1 goes off to on when B2 is on)

6=CU(+1,2)1,1, ... turn direction 1 action (B1 goes on to off when B2 is on)

7=CP(–1,2)1,1, ... turn direction 1 action (B1 goes off to on when B2 is off)

8=CU(–1,2)1,1, ... turn direction 2 action (B1 goes on to off when B2 is off)

So, you can effectively choose how many pulses you will get for a given turning rate. As you can see, you can get

rates of 1x, 2x or 4x—even 3x if you do one part for only half the changes! Note that for reliability at higher speeds

you may need to reduce the PollInterval.

By the way, it is with some of these rotary switches where the double condition facility can come in very useful. If

you have a single rotary of this type with also a push button action available, you can program it to adjust both the

units and fractions of, say, a radio receiver. Just use the Flag associated with the button action to choose between one

pair of actions or another, thus, supposing 1,3 to be the button:

1=CP(F+1,3)(+1,1)1,2, ... increment fraction

2=CU(F+1,3)(+1,1)1,2, ... decrement fraction

3=CP(F–1,3)(+1,1)1,2, ... increment integer

4=CU(F–1,3)(+1,1)1,2, ... decrement integer

One last thing. Using several rotaries of this type (that is, with the two signals in different phase relationships to

indicate direction of turning), if they are of the type that have both signals ‗off‘ in the detent you can save button

connections by making one of them (on each one) common. If you do this you can only turn one of them at a time,

but this is probably a worthwhile restriction if you are getting short of button connections.

ADDING OFFSET CONDITIONS

As well as all the above (and below, for Keys) any or all entries in all Buttons and Keys sections of

FSUIPC.INI can each contain a single condition based on the value of bits, bytes, words or double words

in the FSUIPC IPC interface. These values are addressed by an ―offset‖ value in hexadecimal and include

just about anything you can think of about what is happening in FS.

 26

Just taking some examples, you can make conditions based on whether the aircraft is airborne or on the

ground, whether the engines are running, whether one or more of specific lights are switched on or off,

whether the gear is up or down, and even whether there are valid radio signals for NAV1, NAV2, GS, ILS

LOC, and so on. The possibilities are endless!

To make good use of this you will need the Programmer‘s Guide, which lists all of the offsets. This

document is in the FSUIPC SDK. You‘ll find a lot of data in there that you cannot make use of—the

conditions here deal with bits or values in 8-bit bytes, 126-bit words and 32-bit ―double words‖. You

cannot make use of string values, tables ot floating point values.

You add an offset condition to any Key or Button parameter line in FSUIPC.INI as follows:

<sequence number>=<offset condition> <usual parameter>

The space between the new condition and the normal parameter is essential.

A simple example will help. Take this button push parameter, designed to toggle the landing gear when

the button is pushed:

 1=P1,0,C65570,0

By adding an offset condition we can stop this doing anything when the aircraft is on the ground:

 1=W0366=0 P1,0,C65570,0

The inserted part, ―W0366=0‖ specify that the Word (16-bit or 2-byte value) at offset 0366 must be zero

for this line to be obeyed. Offset 0366 contains 0 when the aircraft is airborne, 1 when it is on the ground.

The format of the condition is:

 <size><offset><mask><condition>

where

<size> is B for Byte, W for Word or D for Double Word,

<offset> is the FSUIPC offset, an hexadecimal value between 0000 and FFFF,

<mask> is optional, and if given selects one of more bits: specify as &x where ‗x‘ is the 8, 16

or 32-bit mask in hexadecimal. The value in the offset is ―ANDed‖ with this mask

before being used,

<condition> is one of:

 =value for equality

 !value for inequality

 <value for less than

 >value for greater than

 and the ―value‖ here is decimal unless preceded by an x (or X) in which case it is

hexadecimal like the offset and mask. FSUIPC will output hexadecimal where a

mask is used, otherwise decimal. All values are treated as unsigned.

The optional mask facility is useful for testing specific bits, as in the case of the light switches in offset

0D0C or the radio reception details in offset 3300. For example, the offset condition:

 W3300&0040!0

is TRUE when the currently tuned NAV1 is for an ILS.

The <condition> part is optional too, defaulting to !0 when omitted, so this last example could be

abbreviated to:

 W3300&0040

 27

For Project Magenta users who sometimes use the default FS autopilot instead one very useful condition is

simply:

 W0500

Offset 0500 is non-zero when PM‘s MCP is running, zero otherwise, so you can program buttons and keys

to operate PM when it is running, but FS otherwise.

Finally, for clever switching you may want to consider using one button to adjust an FSUIPC offset value

which then, via offset conditions, selects between a number of alternative button and/or key assignments.

To assist in this, offsets 66C0 to 66FF are reserved purely for you to do with as you like. The offset cyclic

increment/decrement controls allow, say, a byte value in offset 66C0 to cycle throgh a number of vlues,

then each value selects particular actions for defined keys or buttons. The entries in Buttons or Keys might

look like this:

31=P174,10,Cx510066C0,x00030001

32=B66C0=0 P117,6,C1030,0

33=B66C0=1 P117,6,C1034,0

34=B66C0=2 P117,6,C1038,0

35=B66C0=3 P117,6,C1042,0

Here the value in the Byte at offset 66C0 is cycled from 0–3, and back to 0, by button 174,10, and this

value, in turn, selects what happens with button 117,6.

These are real examples related to programming of a Go-Flight GF45 unit for different frequency

adjustments. Many fuller examples of all this will appear in the documentation for my GFdisplay program,

due shortly. GFdisplay brings my support for GF devices to a completion with display handling to

complement the button programming in FSUIPC.

 28

ERRORS IN BUTTON PARAMETERS

When the [Buttons] sections are read (or re-read via the ―Reload‖ button in the FSUIPC Buttons page), the lines are

thoroughly checked. Any that are syntactically wrong are ignored. However, where a line is ignored, an error

message is appended in the form:

… << ERROR n …

The error numbers possible here are listed below. You can then correct the line and press ―Reload‖ again to re-check

it. You don‘t have to erase the << ERROR … additions. If the line is now okay, that message will be erased for you.

If it is still in error a new error number may appear.

The errors are:

1 Offset condition: no hexadecimal offset following the size (B, W or D)

2 Offset condition: the offset is too big (more than 4 hex digits)

3 Offset condition: the ‗&mask‘ part has no hexadecimal mask

4 Offset condition: the mask is too big (more than 8 hex digits)

5 Offset condition: condition not recognised (not =, !, <, > or space representing !0)

6 Offset condition: comparison value X for hex, not followed by hex value

7 Offset condition: comparison value X for hex, too big (more than 8 hex digits)

8 Offset condition: no decimal or Xhex value after =, !, < or >.

9 Button operation not specified as H, P, R, U or C

10 Conditional button operation, no P, R or U after the C

11 Too many (…) button conditions

12 Condition joystick number too big

13 Button number omitted in condition (the ,b in (j,b))

14 No matching) found for (condition

15 Button number cannot be > 31 in condition

16 Main button joystick number is too big

17 Main button number is greater than 39

18 Comma (,) missing after main button number

19 The C or K needed for Control or Key is missing

20 Unknown formatting, syntax unintelligible

 29

Keyboard Programming

FSUIPC‘s options dialogue provides a page for programming keypresses to assign specific single FS controls. Here

we look at how this programming is encoded in the FSUIPC.INI file, and how the programming can be extended to

provide multiple controls for a single keystroke combination.

FORMAT OF KEY DEFINITIONS

The key programming is saved in sections in the INI file. For globally operative keys this is called [Keys]. For

aircraft-specific buttons it is [Keys.<aircraft name>]. Up to 1024 separate entries defining key actions can be

included in each section, normally numbered sequentially from 0, provided that the total of the definitions in the

Global section and the largest aircraft-specific section is not greater than 1024.

As with the Button parameters, Key press entries are reloaded each time you change aircraft in Flight Sim, so you

can make changes in the INI file and test them without reloading FS.

If the [General] parameter ShortAircraftNameOk is set to Yes or Substring, the <aircraft name> part of the section

heading can be abbreviated (manually, by editing the INI file) so that it applies to more than one aircraft. With the

‗Yes‘ option, FSUIPC will automatically select the section with the longest match. The ordering of sections in the

INI file is not relevant. However, with the ‗Substring‘ option it will select the first section with a substring match –

there‘s no concept of ―longest match‖ in this case.

The format of each entry in the Keys section is as follows:

n=key,shifts,control,parameter

for a key press action only, or

n=key,shifts,control1,parameter1,control2,parameter2

for a key with press (1) and release (2) actions.

Here n can run from 0 to 1023 (i.e. maximum 1024 different keystroke actions can be added),

key virtual keycode, as in the FS CFG file (see list above, in the section about Buttons).

Note: If the key press automatic repeats are to be ignored, this code is preceded by the letter ‗N‘.

shifts 8 normal

+1 shift

+2 control

+4 alt (not really very useful)

+16 tab (an added "shift" to give more combinations)

+32 Windows key (left or right)

+64 Menu key (the application key, to the right of the right Windows key)

[Note that the Tab and Alt keys are denoted by opposite bits here than when used for

button programming. Apologies for this, which was a design oversight now too late to

change]

control FS control number (as in my lists), or special FSUIPC number for additional controls.

This can be in decimal, or, preceded by ‗x‘ in hexadecimal. The additional FSUIPC

controls range from 1000 to 3000, and also values xcc00zzzz in hexadecimal which

encode the FSUIPC ―Offset‖ controls. See list below for full details.

parameter value to go with control, for "SET" types and some special FSUIPC controls. This also is

normally in decimal, but can be in hexadecimal preceded by ‗x‘.

You can do all of this programming directly in the FSUIPC ―Keys‖ page whilst in FS. In fact it is better to do it

there, so you can test it out directly. Note that some of the listed FS controls either do not work, or do not do as you

might suppose! And some seem to be mixed up—for instance the ―Zoom Out‖ and ―Zoom In‖ controls appear to be

switched, even though the Fine variants of these are okay.

There are two reasons you may want to edit the details in the INI file. The first is to make a single button press

operate more than one control. You can specify such actions here, merely by adding the appropriate parameter lines.

The controls will be sent in the order of the parameter entries (i.e. the ‗n‘ in ―n= …‖). You can view all these, and

delete them, in the Keys page on-line, but you cannot edit any other than the first such assignment for that key press.

 30

The second reason is to add FSUIPC offset conditions. The facilities for making Button presses conditional upon

assorted FS internals all apply to Key programming too, and the format and other details are the same as for Buttons.

Please refer to the section above entitled ―adding Offset Conditions‖.

ERRORS IN KEY PARAMETERS

When the [Keys] sections are read (or re-read via the ―Reload‖ button in the FSUIPC Keys page), the lines are

thoroughly checked. Any that are syntactically wrong are ignored. However, where a line is ignored, an error

message is appended in the form:

… << ERROR n …

The error numbers possible here are listed below. You can then correct the line and press ―Reload‖ again to re-check

it. You don‘t have to erase the << ERROR … additions. If the line is now okay, that message will be erased for you.

If it is still in error a new error number may appear.

The errors are:

1 Offset condition: no hexadecimal offset following the size (B, W or D)

2 Offset condition: the offset is too big (more than 4 hex digits)

3 Offset condition: the ‗&mask‘ part has no hexadecimal mask

4 Offset condition: the mask is too big (more than 8 hex digits)

5 Offset condition: condition not recognised (not =, !, <, > or space representing !0)

6 Offset condition: comparison value X for hex, not followed by hex value

7 Offset condition: comparison value X for hex, too big (more than 8 hex digits)

8 Offset condition: no decimal or Xhex value after =, !, < or >.

20 Unknown formatting, syntax unintelligible

21 Virtual key number not in range 1–255

22 No comma (,) after key number

23 No comma (,) after shift code value

24 Bad control value

 31

Additional “FS” Controls added by FSUIPC

All the true FS controls are represented by numbers above 65536. They are listed in my FS-version specific

documents called ―FSxxxx Controls …‖. FSUIPC has augmented these with its own set, programmable for both

Button and Keys, and these utilise lower numbers, currently in the 1000–3000 range. These are:

1001 PTT on (for Squawkbox 3, Roger Wilco or AVC Advanced Voice Client)

1002 PTT off (for Squawkbox 3, Roger Wilco or AVC Advanced Voice Client)

1003 Set button flag (param = 256*joy + btn, or JjBb)

1004 Clear button flag (param = 256*joy + btn, or JjBb)

1005 Toggle button flag (param = 256*joy + btn, or JjBb)

1006 KeySend to WideClients (param = KeySend number, 1–255)

1007 Autobrake Set (param=0 for RTO, 1=off, 2-5 for 1,2,3,Max)

1008 Traffic Density Set (param = 0–100 %), FS2004 only

1009 Traffic Density Toggle (param = 0–100 %), FS2004 only

1010 Spoiler inc (by 512 or amount set in SpoilerIncrement= INI parameter

1011 Spoiler dec (by 512 or amount set in SpoilerIncrement= INI parameter

1012 Traffic labels set (param selects data in labels, see User Guide), FS2004 only

1013 Traffic labels toggle, FS2004 only

1014 Traffic labels on, FS2004 only

1015 Traffic labels off, FS2004 only

1016 Ap Alt Var Dec Fast (–1000)

1017 Ap Alt Var Inc Fast (+1000)

1018 Ap Mach Var Dec Fast (–.10)

1019 Ap Mach Var Inc Fast (+.10)

1020 Ap Spd Var Dec Fast (–10)

1021 Ap Spd Var Inc Fast (+10)

1022 Ap Vs Var Dec Fast (–1000)

1023 Ap Vs Var Inc Fast (+1000)

1024 Heading Bug Dec Fast (–10)

1025 Heading Bug Inc Fast (+10)

1026 Vor1 Obi Dec Fast (–10)

1027 Vor1 Obi Inc Fast (+10)

1028 Vor2 Obi Dec Fast (–10)

1029 Vor2 Obi Inc Fast (+10)

1030 Com1 use whole inc

1031 Com1 use whole dec

1032 Com1 use frac inc

1033 Com1 use frac dec

1034 Com2 use whole inc

1035 Com2 use whole dec

1036 Com2 use frac inc

1037 Com2 use frac dec

1038 Nav1 use whole inc

1039 Nav1 use whole dec

1040 Nav1 use frac inc

1041 Nav1 use frac dec

1042 Nav2 use whole inc

1043 Nav2 use whole dec

1044 Nav2 use frac inc

1045 Nav2 use frac dec

1046 Adf1 use whole inc

1047 Adf1 use whole dec

1048 Adf1 use frac inc

1049 Adf1 use frac dec

1050 Adf2 use whole inc

1051 Adf2 use whole dec

1052 Adf2 use frac inc

1053 Adf2 use frac dec

1054 Xpndr low NN dec

1055 Xpndr low NN inc

1056 Xpndr high NN dec

1057 Xpndr high NN inc

1058 Freeze pos on

1059 Freeze pos off

 32

1060 Freeze pos toggle

1061 Engine 1 Autostart

1062 Engine 2 Autostart

1063 Engine 3 Autostart

1064 Engine 4 Autostart

1065 Throttles off

1066 Throttles on

1067 Throttles toggle

1068 PVT voice transmit on (for Squawkbox 3.0.4 or later)

1069 PVT voice transmit off (for Squawkbox 3.0.4 or later)

1070 Key Press and Release (param is Keycode + 256*Shift code, or JsBk)

1071 Key Press/Hold (param is Keycode + 256*Shift code, or JsBk)

1072 Key Release (param is Keycode + 256*Shift code, or JsBk)

1073 Advdisplay & FSUIPC display window toggle

1079 Traffic Zapper

1080 Wheel trim toggle (for mousewheel trim adjusting)

1081 Wheel trim faster

1082 Wheel trim slower

1083 Wheel trim speed toggle

1084 Lua Kill All

1085 Traffic Zapall

1930 FSUIPC bank hold off

1931 FSUIPC bank hold on

1932 FSUIPC bank hold set

1933 FSUIPC bank hold toggle

1934 FSUIPC mach hold off

1935 FSUIPC mach hold on

1936 FSUIPC mach hold set

1937 FSUIPC mach hold toggle

1938 FSUIPC pitch hold off

1939 FSUIPC pitch hold on

1940 FSUIPC pitch hold set

1941 FSUIPC pitch hold toggle

1942 FSUIPC speed hold off

1943 FSUIPC speed hold on

1944 FSUIPC speed hold set

1945 FSUIPC speed hold toggle

2010 PM MCP SPD push on B747

2011 PM MCP HDG sel on B747

2012 PM MCP ALT push on B747

2013 –

2014 –

2015 –

2016 –

2017 PM MCP FD2 off

2018 PM MCP FD2 on

2019 PM MCP A/T on

2020 PM MCP A/T off

2021 PM MCP THR mode button

2022 PM MCP SPD mode button

2023 PM MCP Mach/IAS sel

2024 PM MCP FLCH mode button

2025 PM MCP HDG mode button

2026 PM MCP VNAV mode button

2027 PM MCP LNAV mode button

2028 PM MCP LOC mode button

2029 PM MCP APP mode button

2030 PM MCP ALT mode button

2031 PM MCP VS mode button

2032 PM MCP AP1 (L) button

2033 PM MCP AP2 (C) button

2034 –

2035 –

2036 PM MCP AP3 (R) button

2037 PM MCP FD1 off

2038 PM MCP FD1 on

2039 –

 33

2040 PM MCP AP Disc (not 747)

2041 PM MCP AP Eng (not 747)

2042 PM MCP AP Disc (747 only)

2043 –

2044 –

2045 –

2046 –

2047 –

2048 –

2049 PM AB LS button

2050 PM AB STD QNH rel (push)

2051 PM AB STD QNH set (pull)

2052 PM AB SPD button push

2053 PM AB SPD button pull

2054 PM AB HDG button push

2055 PM AB HDG button pull

2056 PM AB ALT button push

2057 PM AB ALT button pull

2058 PM AB VS button push

2059 PM AB VS button pull

2060 PM AB EXPED button

2061 PM AB TRKFPA button

2062 –

2063 –

2064 PM PFD Decision Ht Dec

2065 PM PFD Decision Ht Inc

2066 PM MCP Hdg Dec 1

2067 PM MCP Hdg Inc 1

2068 PM MCP Hdg Dec 10

2069 PM MCP Hdg Inc 10

2070 PM MCP Alt Dec 100

2071 PM MCP Alt Inc 100

2072 PM MCP Alt Dec 1000

2073 PM MCP Alt Inc 1000

2074 PM MCP Spd Dec 1/.01

2075 PM MCP Spd Inc 1/.01

2076 PM MCP Spd Dec 10/.10

2077 PM MCP Spd Inc 10/.10

2078 PM MCP V/S Dec 100

2079 PM MCP V/S Inc 100

2080 PM MCP Crs Dec 1

2081 PM MCP Crs Inc 1

2082 PM QNH Dec 0.01/1

2083 PM QNH Inc 0.01/1

2084 PM ND Range Dec

2085 PM ND Range Inc

2086 PM ND Mode Dec

2087 PM ND Mode Inc

2088 PM ND2 Range Dec

2089 PM ND2 Range Inc

2090 PM ND2 Mode Dec

2091 PM ND2 Mode Inc

2092 –

2093 –

2094 –

2095 –

2096 PM AB ND ILS Mode

2097 PM ND Map Arc Mode

2098 PM ND Map Ctr Mode

2099 PM ND Rose Mode

2100 PM ND Map Plan Mode

2101 PM ND Range 10

2102 PM ND Range 20

2103 PM ND Range 40

2104 PM ND Range 80

2105 PM ND Range 160

2106 PM ND Range 320

 34

2107 PM ND Range 640

2108 PM ND VOR display

2109 PM ND NDB display

2110 PM ND WPT display

2111 PM ND ARPT display

2112 PM ND DATA display

2113 PM ND POS display

2114 PM AB ND VOR1 on

2115 PM AB ND ADF1 on

2116 PM AB ND VORADF1 off

2117 PM AB ND VOR2 on

2118 PM AB ND ADF2 on

2119 PM AB ND VORADF2 off

2120 PM AB ND Metric

2121 PM AB ND HDGVS/TRKFPA

2122 PM AB THR TOGA

2123 PM AB THR FLX/MCT

2124 PM AB THR CLB

2125 PM AB THR IDLE

2126 PM AB THR REV IDLE

2127 PM AB THR MAX REV

2128 PM AB ND2 ILS Mode

2129 PM ND2 Map Arc Mode

2130 PM ND2 Map Ctr Mode

2131 PM ND2 Rose Mode

2132 PM ND2 Map Plan Mode

2133 PM ND2 Range 10

2134 PM ND2 Range 20

2135 PM ND2 Range 40

2136 PM ND2 Range 80

2137 PM ND2 Range 160

2138 PM ND2 Range 320

2139 PM ND2 Range 640

2140 PM ND2 VOR display

2141 PM ND2 NDB display

2142 PM ND2 WPT display

2143 PM ND2 ARPT display

2144 PM ND2 DATA display

2145 PM ND2 POS display

2146 PM AB ND2 VOR1 on

2147 PM AB ND2 ADF1 on

2148 PM AB ND2 VORADF1 off

2149 PM AB ND2 VOR2 on

2150 PM AB ND2 ADF2 on

2151 PM AB ND2 VORADF2 off

2152 PM AB ND2 Metric

2153 PM AB ND2 HDGVS/TRKFPA

2154 –

2155 –

2156 –

2157 –

2158 –

2159 –

2160 PM EICAS Show Controls

2161 PM EICAS Standby Gauge

2162 PM EICAS Page Dec

2163 PM EICAS Page Inc

2164 PM EICAS Synoptic Dec

2165 PM EICAS Synoptic Inc

2166 PM AB ND ILS Mode

2167 PM ND Plan Wpt Dec

2168 PM ND Plan Wpt Inc

2950 PM Elec All Toggle

2951 PM Elec PFD Toggle

2952 PM Elec ND Toggle

2953 PM Elec EICAS Toggle

2955 PM Elec PFD2 Toggle

 35

2956 PM Elec ND2 Toggle

2958 PM Elec Stdby Toggle

2966 PM Elec All ON

2967 PM Elec PFD ON

2968 PM Elec ND ON

2969 PM Elec EICAS ON

2971 PM Elec PFD2 ON

2972 PM Elec ND2 ON

2974 PM Elec Stdby ON

2982 PM Elec All OFF

2983 PM Elec PFD OFF

2984 PM Elec ND OFF

2985 PM Elec EICAS OFF

2987 PM Elec PFD2 OFF

2988 PM Elec ND2 OFF

2990 PM Elec Stdby OFF"

2994 PM Whazzup keys (by Param), see PM offsets list, 542E

2995 PM Quickmap keys (by Param), see PM offsets list, 542C

2996 PM GC keys (by Param), see PM offsets list, 542A

2997 PM CDU keys (by Param), see PM offsets list, 5428

 Note: all the ―Keys‖ inputs to PM modules provide efficient ways of directing specific keypresses to

them, wherever they may be on the Network. The parameter in these is the keystroke code (see the

list earlier in this document) , plus specific PM-defined values for shifts, thus:

 256 for Shift, 512 for Ctrl, 1024 for Alt.

 You don‘t need to worry about changing other bits when two codes are the same—FSUIPC takes

care of that automatically.

2998 PM MCP Kcodes (by Param), see Pm offsets list, 04F2

 This way of controlling the PM MCP may offer some features not found elsewhere. The parameter

is the number used in the Elan Informatique ―Knnn‖ codes normally sent to the MCP via a serial

connection. Here is a list of those known at present, but please refer to the PM offsets document for

up-to-date information:

10 SPDP (SPD pushbutton 747 MCP,

Speed Intervention on B737 MCP)

11 HDGP (heading SEL pushbutton 747 MCP,

use 25 for HDG HOLD,
use 25 for HDG SEL on the 737)

12 ALTP (ALT pushbutton 747 MCP,

Altitude Intervention on 737 MCP)
17 FDON (switch on First Officer‘s FD)

18 FDFF (switch off First Officer‘s FD)

19 ATON (switch on)
20 ATFF (switch off)

21 THR

22 SPD
23 MACH

24 FLCH

25 HDG K025
26 VNAV K026

27 LNAV K027

28 LOC K028
29 APP K029

30 ALT K030

31 VS K031
32 AP1 K032

33 AP2 K033

34 CWSA K034
35 CWSB K035

36 AP3 K036

37 FDON K037 (switch on Captain‘s FD)
38 FDFF K038 (switch off Captain‘s FD)

40 APDI (AP Disengage - not used in 747-400 MCP)

41 APEN (AP Engage - not used in 747-400 MCP)
44 FPV

144 FPV Copilot

45 MTRS
145 MTRS Copilot

46 CTR ND

47 TFC (TCAS)
147 TFC (Copilot TCAS)

48 RST

148 RST Copilot RST
49 STD

149 STD Copilot STD

50 VOR1
51 ADF1

52 OFF1

53 VOR2
54 ADF2

55 OFF2

62 IN
63 HPA

64 setDH

65 setMDA
66 APP ND

67 VOR ND

68 MAP ND
69 PLN ND

70 VOR1 (double for some mixed AB/Boeing setups)

71 ADF1
72 OFF1

73 VOR2

74 ADF2
75 OFF2

170 VOR1 F/O

171 ADF1 F/O
172 OFF1 F/O

173 VOR2 F/O

174 ADF2 F/O
175 OFF2 F/O

80 STA

81 WXR
99 DISC (747 disconnect)

 36

2999 Project Magenta GC Controls. Param specifies action, as shown below (list from Project Magenta

―Offsets‖ publication, with permission). [Add 100 for First Officer GC, else Captain side assumed.]

Airbus

1 MAP (Captain Side, 101 F/O side)
2 NAV (Captain Side, 102 F/O side)

3 VOR (Captain Side, 103 F/O side)

4 PLAN (Captain Side, 104 F/O side)
5 ILS Mode

Boeing 'Classic Modes'
1 MAP ARC

2 MAP CTR

3 VOR
4 MAP PLAN

New ND Modes (!)
1 MAP

3 VOR

4 PLN

5 APP

6 CTR Pushbutton

7 Force display to 8 Modes (APP/VOR/MAP/PLN)

8 Show Controls in EICAS/ECAM

9 Hide Controls in EICAS/ECAM
10 PFD/ND -> PFD -> ND (like pressing F4,F1,F2 in GC)

11 PFD/EICAS

12 EICAS with Standby
13 EICAS without Standby

14 FPV (Boeing)

15 EICAS/ND
19 Toggle Controls in EICAS/ECAM

20 Incr Engine Page

21 Decr Engine Page
22 Toggle No Smoking

23 Toggle Seatbelts

24 Toggle Overview Page
25 Toggle RMI/HSI display in Boeing-Type ND MAP

ARC
26 Metric Toggle

28/29 ND Mode INC/DEC for Airbus

30 Engine Page (Primary) 0

31 Engine Page 1

32 Engine Page 2
..

39 Engine Page 9 (if defined)

40 Range 5 NM

41 Range 10 NM

42 Range 20 NM
43 Range 40 NM

44 Range 80 NM

45 Range 160 NM
46 Range 320 NM

47 Range 640 NM

48 Range DEC
49 Range INC

50 TCAS Off

51 TCAS Alt
52 TCAS Callsign

53 TCAS All

54 Toggle TCAS Off/Alt

55 Show MCP Values in EICAS (Boeing) (Special PFC

Display)

56 Hide MCP Values in EICAS (Boeing) (Special PFC

Display)

57 PLAN mode next waypoint
58 PLAN mode previous waypoint

60 Show Overview Page in ND

61 Hide Overview Page in ND
62 Set/Reset Timer (AB Glass Cockpit)

72 Toggle WXR

73 VORADFL OFF
74 ADFL ON

75 VORL ON

76 VORADFR OFF
77 ADFR ON

78 VORR ON

80 Terrain Display On
81 Terrain Display Off

82 Toggle Terrain Display

83 Terrain Type Change
84 Terrain Colour/Mode Change

85 Terrain Size Change

86 Terrain 3D
90 STA

91 VOR

92 NDB

93 WPT

94 ARPT

95 DATA
96 POS

321 Decrease Synoptic/System Display Page

322 Increase Synoptic/System Display Page

(Boeing)

Secondary EICAS pages and functions 747 (777)

301 ENG
302 STAT

303 ELEC

304 FUEL (777: HYD)
305 ECS (777: FUEL)

306 HYD (777: AIR)

307 DRS (777: DOORS)
308 GEAR

309 --- (777: FCTL)

310 CANC
311 RCL

(Boeing)

401 Caution On (see 0x4FE)

402 Caution Reset

411 Show FuelUsed Toggle

412 ShowFuelUsed On

413 ShowFuelUsed Of
414 Reset FuelUsed = 0

(Both)

421 Toggle No Smoking

422 No Smoking On

423 No Smoking Off

424 Toggle Seatbelts
425 Seatbelts On

426 Seatbelts OfF

(Airbus)

Secondary EICAS pages and functions AB

301 ENG
302 BLEED

303 PRESS

304 ELEC
305 HYD

306 FUEL

307 APU
308 COND

310 DOOR

311 WHEEL
312 F/CTL

313 ALL

314 CLR
315 STS

316 RCL

317 CLR

 37

70 Show WXR
71 Hide WXR

318 EL/DC (A330/340)
319 C/B (A330/340)

x0100zzzz Offset Byte Set (offset = zzzz), hexadecimal
x0200zzzz Offset Word Set (offset = zzzz), hexadecimal
x0300zzzz Offset Dword Set (offset = zzzz), hexadecimal
x0500zzzz Offset Byte Setbits (offset = zzzz), hexadecimal
x0600zzzz Offset Word Setbits (offset = zzzz), hexadecimal
x0700zzzz Offset Dword Setbits (offset = zzzz), hexadecimal
x0900zzzz Offset Byte Clrbits (offset = zzzz), hexadecimal
x0A00zzzz Offset Word Clrbits (offset = zzzz), hexadecimal
x0B00zzzz Offset Dword Clrbits (offset = zzzz), hexadecimal
x0D00zzzz Offset Byte Togglebits (offset = zzzz), hexadecimal
x0E00zzzz Offset Word Togglebits (offset = zzzz), hexadecimal
x0F00zzzz Offset Dword Togglebits (offset = zzzz), hexadecimal
x1100zzzz Offset UByte Increment (offset = zzzz), hexadecimal *
x1200zzzz Offset UWord Increment (offset = zzzz), hexadecimal *
x2100zzzz Offset UByte Decrement (offset = zzzz), hexadecimal *
x2200zzzz Offset UWord Decrement (offset = zzzz), hexadecimal *
x3100zzzz Offset SByte Increment (offset = zzzz), hexadecimal *
x3200zzzz Offset SWord Increment (offset = zzzz), hexadecimal *
x4100zzzz Offset SByte Decrement (offset = zzzz), hexadecimal *
x4200zzzz Offset SWord Decrement (offset = zzzz), hexadecimal *
x5100zzzz Offset Byte Cyclic Increment (offset = zzzz), hexadecimal *
x5200zzzz Offset Word Cyclic Increment (offset = zzzz), hexadecimal *
x6100zzzz Offset Byte Cyclic Decrement (offset = zzzz), hexadecimal *
x6200zzzz Offset Word Cyclic Decrement (offset = zzzz), hexadecimal *
x7000zzzz Offset Float32 Set/1000 (offset = zzzz): the parameter is divided by 1000
x7400zzzz Offset Float64 Set/1000 (offset = zzzz): the parameter is divided by 1000
x7800zzzz Offset Float32 Inc/1000 (offset = zzzz): the parameter is divided by 1000
x7C00zzzz Offset Float64 Inc/1000 (offset = zzzz): the parameter is divided by 1000
 (For “decrements” use a negative parameter in the increment controls)

 * The fixed point increment/decrement values operate on Unsigned (U) or Signed (S) values, and have a

parameter with the unsigned or signed limit in the upper 16 bits and the increment/decrement amount (always
unsigned) in the lower 16 bits.

Macro Controls

FSUIPC will read any file in the Modules folder which has file type ―mcro‖. Such files contain definitions of

additional controls to be listed and assignable in FSUIPC's Keys, Buttons and Axis Assignments dialogues. All

macro files are also re-read and re-installed whenever the Reload button in any of those three dialogues are used.

It is important that the file name (xxxx.mcro) be unique in the first 16 characters, as this will be used as part of the

name of the added controls in the drop-downs. Best to keep the names short and to the point—probably the name of

the program or program function for which the controls are being added.

Inside a macro file there should be just one section called [Macros]. This must contain definitions of numbered

controls, with names also up to 16 characters. These names only have to be unique in that file.

Here is an example, here for a possible Project Magenta glass cockpit ND Mode switch:

[Macros]

1=MAP Capt=C2999,1

2=NAV Capt=C2999,2

3=VOR Capt=C2999,3

4=PLN Capt=C2999,4

5=APP Capt=C2999,5

6=CTR Capt=C2999,6

101=MAP F/O=C2999,101

102=NAV F/O=C2999,102

103=VOR F/O=C2999,103

104=PLN F/O=C2999,104

105=APP F/O=C2999,105

106=CTR F/O=C2999,106

 38

Note that the numbers on the left do not have to be contiguous, but must be in the range 1–999 inclusive. These will

be used internally, and in the FSUIPC INI file, to identify the control within the file.

Supposing the example above occurred in a file called ‗PM GC.mcro‘. The names which would then appear, in

proper alpha sequence in the FSUIPC drop-downs, would be:

PM GC: APP Capt

PM GC: APP F/O

PM GC: CTR Capt

PM GC: CTR F/O

PM GC: MAP Capt

PM GC: MAP F/O

PM GC: PLN Capt

PM GC: PLN F/O

PM GC: VOR Capt

PM GC: VOR F/O

The value assigned to each control is either another control (any FS or FSUIPC-added control, including offset

controls and even macro controls—see later), or a Keypress. i.e:

Either: Cn,p (control number, parameter, optionally in hex with a preceding x)

Or: Kk,s (keycode and shifts).

Both of these are exactly as already defined for Button controls—see the earlier section on Button programming.

Macro Control References

Macro controls are represented internally in the same sort of way as FSUIPC offsets controls, by using high-value

bits in the control number. However, the representation in Macro files and in the INI file is as follows:

Mm:n

where m if the Macro File number (see below) and n is the control number from the file, as described above.

Macro file numbers are assigned by FSUIPC when it loads the file. These are remembered in the INI file in a new

section [MacroFiles]. For example, in the above case you might get:

[MacroFiles]

1=PM GC

making ―PM GC.mcro‖ file number 1 for all reference purposes.

It is important to note that different users will have a different selection of macro files in different orders. If they

wish to exchange Button assignments they will need to re-assign all macro controls after making their [MacroFiles]

sections the same, or at least the same for those files they have in common.

Multiple actions in one macro control

A macro control is not limited to having only one resulting action. If more than one action is required several lines

are used in the definition, as follows:

n=<name>

n.1=action1

n.2=action2

etc.

For an example consider a ‗Menu.mcro‘ file containing these definitions:

[Macros]

1=Display

1.1=K79,16 ;O

1.2=K69,8 ;E

1.3=K68,8 ;D

 39

2=FSUIPC

2.1=K77,16 ;Alt M

2.2=K70,8 ;F

This adds two controls, ‗Menu: Display‘ and ‗Menu: FSUIPC‘. The first uses ALT+O E D keystrokes to call up the

FS display settings dialogue, the second uses ALT+M F to call up the FSUIPC options.

Note that there‘s a limit of 2000 numbered parameters in total in the macro file—so, for instance, 999 macro

numbers (1–999, the maximum) with an average of two actions each would be just two shy of the limit. Large files

aren‘t good in any case as the drop-down list will be full of the added controls all beginning with the same filename.

Best to split into functional groups with meaningful filenames, to make the controls easier to locate.

Parameter passing

Normally, and certainly in all the above examples, any parameter set for a Macro Control, when assigned in the

Buttons or Keys dialogues, would be discarded as not relevant. However, there is a facility to allow it to be used.

If the parameter part of any of the controls defined in the macro is omitted, the parameter value from the calling

macro is substituted.

As a rather silly example, if you wanted a general PM GC control but not the one named already in FSUIPC, you

could define it as

7=by param=C2999

This would appear in the drop-downs as ‗PM GC:by param‘, and the parameter assigned by the user would be used

in the C2999 operation. Note that in multiple-line definitions, the same parameter value substitutes for every omitted

parameter value.

One interesting consequence of this is the possibility of defining axis controls. To make another silly example, if I

define a macro like this:

8=Flaps=C66534 ;FS control 66534 is Axis Flaps Set

and then assign it to an axis in the Axis assignments dropdown, the axis I've assigned will operate exactly as the Axis

Flaps Set axis.

This may not seem so futile when you realise that you can have multiple line mixtures of controls and keypresses

also produced by the same Macro. I'm sure there would be wealth of ideas for using this ‗feature‘ (which actually fell

out of the implementation by accident rather than by design!).

Mouse macros

Another feature of Macro files is their ability to add controls to your armoury which operate switches, dials and other

features of FS panels and gauges (mostly add-on ones) which can otherwise only be operated by using the mouse.

Furthermore, this facility can actually be used even without recourse to manually preparing the macro files directly—

that part is semi-automated via Mouse Macro buttons in both the Buttons and Keys option tabs in FSUIPC. Details of

the automatic facilities are provided in the main User Guide. Here we just concentrate on the file itself, the format of

the mouse macro lines.

Note that a single Macro file can contain any mixture of mouse and other macros. In fact Mouse, Control and

Keypress actions can all be mixed and combined in a single Macro. Of course, this doesn‘t happen for the

automatically generated macros.

This mouse facility adds the rather obscure format:

 R<module>:<rect#>,<mouseflag>

to those already described for Keys (K), Controls (C) and onward Macro references (M). The ‗R‘ here is for mouse

Rectangle, because it is via specific rectangular areas on screen that FS recognises mouse requests. An ‗M‘ for

Mouse would have been better, but that‘s already used for Macro.

 40

Now I‘ll explain what the values in this specification actually mean, but in general no user will actually be concerned

with them, as they either have to be supplied be the gauge maker (the add-on panel supplier), or, more usually, be

generated automatically for you by FSUIPC, through use of the Mouse itself in mouse macro creation mode.

So, in the mouse action specification:

<module>: is optional. It is a reference to the Gauge or DLL filename, the part of the panel which will be asked to

process the Mouse action. It is a numerical reference to another line which must also be present somewhere in the

[Macros] section of the .MCRO file, one like this:

 ModuleN=‖name of gauge or DLL‖

where ‗N‘ can run from 1 to 99, or be omitted (so giving ―Module=‖...‖).

If the <module>: part of the mouse action is omitted, the Module being referenced is the one with no number.

Otherwise it is simply N:, referring directly to the module.

The <rect#> part is the only mandatory part. It is either a reference to the ―MouseRect‖ number in the tables in the

Module—as ―Rn‖ referring to the nth rectangle, counting from 0—or a direct reference to the Mouse Function inside

the module, as ―RXxxxx*xxxx‖, where the ‗xxxx‘ parts refer to a hexadecimal offset and check-word, respectively.

The offset is from the Module‘s load address in memory, and the check word are the 16 bits around the mouse

function‘s entry point: 8 bits before and 8 bits after. The check-word is a safety measure, in case the macro is used on

a different version of the same Gauge or DLL.

Finally, the ,<mouseflag> part provides the actual mouse action required to operate the facility. This is encoded as a

number and must be one of the following:

31 MOUSE_RIGHTSINGLE

 30 MOUSE_MIDDLESINGLE

 29 MOUSE_LEFTSINGLE
 28 MOUSE_RIGHTDOUBLE

 27 MOUSE_MIDDLEDOUBLE

 26 MOUSE_LEFTDOUBLE
 21 MOUSE_DOWN_REPEAT

19 MOUSE_RIGHTRELEASE *

18 MOUSE_MIDDLERELEASE *
17 MOUSE_LEFTRELEASE *

 14 MOUSE_WHEEL_UP

 13 MOUSE_WHEEL_DOWN
11 MOUSE_LEAVE *

Of these, 29 is bar far the most common and is assumed when the parameter is omitted. Note that the values actually

equate to the mouse flags by those names in the FS Gauge C/C++ SDK.

Those marked * cannot be generated automatically by FSUIPC as they refer to the mouse buttons being released.

However, they may be needed for some switch implementations, and you would need to add them yourself—

experimentation is key here. There are examples in the main User Guide.

Of these, 29 is bar far the most common and is assumed when the parameter is omitted. Note that the values actually

equate to the mouse flags by those names in the FS Gauge C/C++ SDK.

Just to put all this stuff into context, here are some actual examples. The first is from the FS9 PMDG737NG

overhead:

Module="PMDG_737NG_Overhead.gau"

1=Batt=RX3170*X8b90

Module1="PMDG_737NG_OHD_APU.GAU"
40=APU=R1:1

If these lines are in a loaded MCRO file called ―737 OHD‖ then the Buttons and Keys controls drop-downs would

list ―737 OHD:Batt‖, which would operate the Battery switch, and ―737 OHD: APU‖ which would operate the APU

switch. These would only do anything if the overhead gauge is loaded—i.e. the aircraft is in use. Note that the

Overhead gauge itself doesn‘t have to be visible.

Here is an extract from the Macro file for the add-on gauge/DLL ―APchart‖:

Window="Airport Chart"
Module="APchart.gau"

1=Show/Hide=C66506,10000

...
7=Knob1 Down=R20,14

8=Knob1 Up=R20,13

 41

This has a non-Mouse control included to show and hide the AP chart window. That uses the ―PANEL ID SET‖

control with the panel ID number 10000 as parameter (gleaned from the Panel.cfg file). It also has a couple of entries

shown which are operated by the mouse wheel.

But note that new parameter

Window="window title"

This needs to be present when it only makes sense to use the controls with the window both open and visible. This

applies to APchart where zooming and moving the chart would be daft without seeing it. You will find Window

names for panel parts in the Panel.CFG file. The automatic mouse macro generating facilities in FSUIPC never add a

Window parameter, so this may be the one good reason you ever edit a MCRO file.

Axis Assignments

Axis assignments are saved in the [Axes] section, or [Axes.<aircraft name>] for aircraft specific assignments.

Generic aircraft assignments can be made using the same parameter and name shortening as for the Buttons and

Keyboard sections.

The polling interval can be changed by a parameter

PollInterval=10

inserted into the main [Axes] section. The units are milliseconds, 10 being the default.

The format of the axis parameters in these sections is as follows:

For the main axis entry (explanation of values below):

n=ja,(R)delta(/delay)

where the parentheses merely show optional parts, and

j = joystick # (0 to 18, 16 to 18 being PFC)

a = axis (XYZRUV)

R is only present when "Raw" mode is selected

delta is the delta value (eg 512, or 1 for Raw mode)

/delay is an optional delay*, in milliseconds

When axis controls are assigned (the left part of the options), this is extended by the definition of the controls:

n=ja,(R)delta(/delay),ForD,ctl1,ctl2,ctl3,ctl4

where

ForD is an F for "FS control" or D for "Direct to FSUIPC calibration"

ctl1 to ctl4 are the control numbers, or zero where unassigned. For Direct mode, these are the calibration

indices, 1–4 on Page 1 of calibrations, 5–8 on page 2, etc. Numbers 45–48 are the ―dual‖ controls, equating

to others depending on whether FS is in flight mode or Slew mode.

* FSUIPC can apply delays to any axis assigned through its Axis Assignment facilities. The delay is limited to a minimum

of 2 x the axis polling interval (which defaults to 10 mSecs) and a maximum of 200 x this interval (i.e. 2 seconds with the

default polling interval).

Delays for axes have to be edited in the INI file. There is no facility to change them or even see them in the option screens.

Delays of 200 mSecs or more should be reasonably accurately maintained most of the time, but short ones could vary quite a

bit, the smaller you set them, because of the granularity of the polling interval and the sharing of the processor with other

things going on in FS.

Here's an example of an axis assigned to the FSUIPC Spoiler, with a 1 second delay:

0=0Y,256/1000,D,22,0,0,0

If the axis is programmed to send controls based on the axis passing through zones (the right side of the options),

there will also be entries for each such assignment, thus:

n=ja,UDorB(R),low,high,ctl,param

where UDorB is U for Up, D for Down or B for Both

R optionally specifies Repeat

low and high give the axis values for the zone

 42

ctl and param are the Control numbers, and Parameter where used.

Here's an example for a Gear lever:

1=0Z,256/500

2=0Z,U,6400,16383,66079,0

3=0Z,D,-16384,-13783,66080,0

Note that the delay option (here half a second) still goes on the main axis entry, the one defining the delta (and

"Raw" mode if applicable).

You can edit the INI file whilst FS is running, then simply going to the Axis Assignment options page and clicking

the reload button at the bottom of the window.

Programs: facilities to load and run additional programs

FSUIPC can, as an extra, cause other programs to be run each time you load and run Flight simulator. Details of

what programs to be run are provided in an additional section in the FSUIPC.INI file. This section cannot be edited

in the on-line FSUIPC options dialogues. You need to either edit the details directly in the INI file, or use the

excellent utility program ―Run Options‖ provided separately by José Oliveira (you need the version of Run Options

dated November 2002 to use the new ‗CLOSE‘ option).

The additional section is

 [Programs]

and can contain up to 16 requests to run other programs—up to 8 ―Run‖ parameters Run1 to Run8, and up to 8

―RunIf‖ parameters, RunIf1 to RunIf8. Both sets are otherwise identical in format. The only difference is that the

RunIf programs are not run if they appear to be already running. The ordinary ―Run‖ programs will be loaded

without such checking.

The format is simply:

 RunN=(Options,)<full pathname of program to be run>

or RunIfN=(Options,)<full pathname of program to be run>

where N runs from 1 to 8. Details of options are given below, but if none are required the parameter simplifies into

just the full pathname.

For example: Run1=D:\RadarContact\RCV3.exe

might be used to run Radar Contact version 3.

If the program needs command-line parameters these can be included by enclosing the whole value in quotes, so that

the space(s) needed don't cause problems. You may also need to include the quotes if the pathname includes spaces.

For example:

 Run2="c:\epic\loadepic fs98jet"

The programs are loaded in order of the run number, 1–8. If a mixture of Run and RunIf parameters are given, the

order is Run1, RunIf1, Run2, RunIf2, and so on.

The Options you can use are as follows:

HIDE tries to get the program to hide itself when it runs. This is only possible if the program

defines its window to use default settings, so it isn‘t very useful for many programs,

unfortunately.

HIGH runs the program at higher priority than FS. Use with care! Messing about with priorities

doesn‘t work well in all circumstances, and in particular FS2002 doesn‘t seem to like it

much.

CLOSE closes the program tidily (if possible) when FS is terminated.

KILL forcibly terminates the program, if possible, when FS is terminated.

LOW runs the program at IDLE priority. Depending on what the program does, this may actually

effectively stop it until you direct user focus to it, as FS tends to soak up all Idle time.

 43

READY delays loading and running the program until FS is up and ready to fly, and FSUIPC can

supply valid data through its IPC interface. (This parameter may, of course, result in the

programs being run in a different order to that specified by the Run number).

Of these really only CLOSE, KILL and READY are of general use. If you want to apply more than one option, list

them separated by commas, but no spaces. For example:

 RunIf1=READY,KILL,D:\FS2002\WeatherSet.exe

Assignment of FLAPS_SET control (for FS2002 only)

The Flaps calibration facility in FSUIPC cannot be used directly in FS2002, because the convenient FLAPS_SET

cannot be assigned to an Axis in FS2002.CFG. This omission was corrected in FS2004, and in the latter you can

even assign a Flaps Axis in FS‘s Options–Controls–Assignments dialogue.

To get around the problem in FS2002, you can select any one of the following Axis controls (obviously one you are

not otherwise using!), assign it (by name) to your Axis in FS2002.CFG, tell FSUIPC to use this by declaring its

numeric value, as about to be explained, then calibrate it in FSUIPC‘s Joystick section (as the FLAPS control, on

page 6).

The AXIS controls at your disposal are listed below. Use the chosen name in FS2002.CFG and the relevant number

in a new parameter in the [JoystickCalibration] section of FSUIPC.INI, thus:

 FlapsSetControl=<control number>

This is set to 0 to disable the Flaps Set interception.

Valid Axis Controls (N.B. Not all tested. Please advise if you find any which don‘t work in FS2002):

AXIS_AILERONS_SET 65763

AXIS_ELEV_TRIM_SET 65766

AXIS_ELEVATOR_SET 65762

AXIS_LEFT_BRAKE_SET 66387

AXIS_MIXTURE_SET 66292

AXIS_MIXTURE1_SET 66422

AXIS_MIXTURE2_SET 66425

AXIS_MIXTURE3_SET 66428

AXIS_MIXTURE4_SET 66431

AXIS_PAN_HEADING 66504

AXIS_PAN_PITCH 66503

AXIS_PAN_TILT 66505

AXIS_PROPELLER_SET 66291

AXIS_PROPELLER1_SET 66421

AXIS_PROPELLER2_SET 66424

AXIS_PROPELLER3_SET 66427

AXIS_PROPELLER4_SET 66430

AXIS_RIGHT_BRAKE_SET 66388

AXIS_RUDDER_SET 65764

AXIS_SLEW_AHEAD_SET 65867

AXIS_SLEW_ALT_SET 65870

AXIS_SLEW_BANK_SET 65871

AXIS_SLEW_HEADING_SET 65869

AXIS_SLEW_PITCH_SET 65872

AXIS_SLEW_SIDEWAYS_SET 65868

AXIS_SPOILER_SET 66382

AXIS_THROTTLE_SET 65765

AXIS_THROTTLE1_SET 66420

AXIS_THROTTLE2_SET 66423

AXIS_THROTTLE3_SET 66426

AXIS_THROTTLE4_SET 66429

Assignment of additional controls

 (Reverser, Aileron and Rudder Trims, and Cowl Flaps)

There are no axis controls provided in FS for jet thrust reversing nor for aileron or rudder trim or even for setting the

cowl flaps. To get around this, you can select any FS Axis control (one you are not otherwise using!), and assign it to

your Axis in FS‘s assignments dialogue. Then you need to tell FSUIPC which one to use this by declaring its

numeric value, as about to be explained, and calibrating it in FSUIPC‘s Joystick section (on page 7 or 8).

Most of the AXIS controls at your disposal are listed above with their numeric equivalent. Others can be found in my

FS Controls Lists which you can find on www.schiratti.com/dowson (separate ones for FS2000, FS2002 and

FS2004). Use the relevant number in a new parameter in the [JoystickCalibration] section of FSUIPC.INI, thus:

 ReverserControl=<control number>

 AileronTrimControl=<control number>

 RudderTrimControl=<control number>

 CowlFlaps1Control=<control number>

CowlFlaps2Control=<control number>

CowlFlaps3Control=<control number>

CowlFlaps4Control=<control number>

http://www.schiratti.com/dowson

 44

These are set to 0 to disable the interception altogether, but FSUIPC assigns the AXIS_MIXTURE_SET control

(number 66292) to the Reverser by default. There is one other parameter for the reverser:

MaxThrottleForReverser=0

This controls the interlock—the reverser will not engage until all throttles are reduced to this setting (normally 0, or

idle). You can try a non-zero value here if you cannot calibrate your throttles to produce a stable idle zero.

Multiple Joysticks

Method 1:

On FS2000–2004, using the Joystick sections of the FSUIPC dialogue to calibrate the main flight controls, FSUIPC

can also accept up to four different control inputs for each main flight control, treating them equally. You can have

up to 4 aileron, elevator, rudder, throttle, left and right brake controls. FSUIPC takes the value from the input giving

maximum deflection from ‗neutral‘ or ‗idle‘. There‘s no averaging, or other types of conflict resolution, taking place.

You have to somehow connect up your multiple joystick axes, whether by using an EPIC card, multiple Game Ports,

or multiple USB devices. FSUIPC cannot help there. Having done that, you need to find ‗spare‘ FS controls which

you will not otherwise be using from joystick inputs (see the lists in my FS2000 Controls documents)—it doesn‘t

matter if you will be using those controls from the keyboard. FSUIPC only pinches the joystick inputs. You have to

assign the additional joystick axes, wherever they may be, to these ―spare‖ controls.

Now add to the FSUIPC.INI file‘s JoystickCalibration section (add the section if necessary) a list of declarations

which define the additional controls you have assigned. You define these by number. The main flight controls are

defined by parameters like this:

 AileronB=<control number>

ElevatorB=<control number>

 RudderB=<control number>

Other parameters here can define LeftBrakeB, RightBrakeB, ThrottleB, and also C and D versions of all 6 controls,

so providing up to 4 copies of each one.

Note that you will need to calibrate all controls so that the ones controlling the same values are as close as possible in

range and response. Do this first in Windows Control Panel, then, after making the above adjustments and

assignments, in FSUIPC. Calibrate dead zones at the ends (and in the centre for aileron, elevator and rudder) to

―cover up‖ any discrepancies—in other words, calibrate for the worst of each.

Method 2:

An easier method is now available, provided you use the FSUIPC Axis Assignments facility to assign your controls,

deleting them from FS assignments.

FSUIPC‘s axis assignments allows any of your joystick axes to be assigned to any of FS‘s or FSUIPC‘s axis

controls, and there‘s no restrictions on how many you can assign to any of them. So that‘s the first problem solved –

you can assign two sets of yokes, rudders, whatever, to the same controls.

Both FSUIPC and FS take notice of the last movement in an axis. They don‘t ―poll‖ them to get regular inputs, but

only see changes coming from them. So both will see the last change from multiple axes. However, that might be

from an unwanted jitter or small accidental movement. So, provided you assign your axes for Direct FSUIPC

Calibration (as opposed to an FS control), FSUIPC now arbitrates, selecting the axis with the highest deflection

(defined here as a difference from zero).

Note, however, that it still only sees axes when they change, so even if one axis is held at an large deflection, once

another axis for the same control moves to a similar or higher position, that takes control then even if it moves lower

than the held on—the latter is effectively ―out of it‖ until it is moved.

The hints about calibration in Method 1 still apply.

 45

HELICOPTER PITCH and BANK TRIM facilities

A facility to operate pitch and bank trims on helicopters is provided. This uses the normal FS elevator and aileron

trim controls (and axes) to modify the end value on the ―Y‖ (elevator) and ―X‖ (aileron) axis of the cyclic. To use

this you need to ensure that the axes are calibrated through FSUIPC (as the elevator and aileron axes respectively),

and add

ApplyHeloTrim=Both

to the relevant [JoystickCalibration …] section(s) in FSUIPC.INI. Note that, as a precaution, the trim value will

never be added to the relevant axis if the normal trim value is non-zero.

This new ―helo trim‖ values are maintained in IPC offsets as follows:

0BBE 2 bytes 16-bit Helo Pitch Trim value, range –16383 to +16383

0C06 2 bytes 16-bit Helo Bank Trim value, range –16383 to +16383

Both of these can be written to for external program control.

Note that if you only require a pitch trim you can set

ApplyHeloTrim=Yes

Instead of ‗both‘. The aileron/bank axis and trim values will then be left alone.

Message Filters

Messages sent to FSUIPC for display on the FS screen can be filtered and forcibly routed according to their first few

characters. This is done by adding a new section to the FSUIPC.INI file, as follows:

 [MessageFilters]

 Suppress=...

 SingleLine=...

 MultiLine= ...

The ―...‖ part is replaced by a list of up to 8 strings (in "quotes"), each of less than 16 characters. Messages sent to

FSUIPC are compared with these. If they start with the same characters (case ignored) then the action taken is as

follows:

 Suppress: the message is discarded

 SingleLine: the message is treated as a single line message even if it isn't

 Multiline: the message is treated as a multiline message even if it isn't.

For example:

SingleLine="FDC","PM MCP"

will route messages beginning "FDC" or "PM MCP" to the single line window, unless such messages are suppressed

by FSUIPC option.

 46

Facility for multiple INI installations (FS2000–FS2004)

Different FSUIPC.ini files can be used for differing FS requirements, even loading from the same FS2000/2002

installation. This involves using multiple FS2000.CFG, FS2002.CFG or FS9.CFG files with different filenames, with

the following section added in each one:

[FSUIPC]

ControlName=<name>

Then you load FS for each configuration with the command line parameter specifying the CFG file, thus, for FS2000

for example:

FS2000.exe /CFG:<filename>.CFG

And this will allow FSUIPC to identify its correct .INI file, <name>.ini.

IMPORTANT: For FS9 CFG files, please put your alternative CFG files into the main FS9 folder, not the

―Documents and Settings‖ place where the default FS9.CFG goes. If you put it where it seems logical, FS9 will not

see it and will create a new default CFG file with the name you specified, placing it in the default FS9 folder!

You FSUIPC.KEY file will need duplicating with your new name too, i.e. <name>.KEY. You can of course have

different Keys in each, though the name/address details will have to be the same as they are cross-checked. The Log

files will also use this <name>, not just FSUIPC.log etc.

The main use of this feature is so that a PC can be used in two or more modes with one FS installation, for example:

 As a WidevieW ―slave‖ with the appropriate default Flight loaded by FS (to place it into slew mode with the

correct view) and the correct FSUIPC options set for allowing WidevieW to copy the weather correctly, and:

 With different FS cfg and FSUIPC ini files to run FS in normal ‗local control‘ mode with all normal options.

 47

Appendix: About the Aircraft Specific option and “ShortAircraftNameOK”

Note: this is a contribution from a user, to whom thanks is expressed.

There are these three choices in FSUIPC settings:

ShortAircraftNameOK=No

ShortAircraftNameOK=Yes

ShortAircraftNameOK=Substring

Result: To get exactly the same settings for AXES, BUTTONS, KEYS and CALIBRATION for each plane
repaint or variant.

The Short Aircraft Name in FSUIPC refers to the name in the Aircraft.cfg file under “title”

For example: Aerosoft DHC Beaver. There might be 7 variants or repaints

aircraft.cfg \(flightsim.X)\title= Aerosoft Beaver DHC-2A 55-0682
aircraft.cfg \(flightsim.X)\title=DHC-2A C-GSKY Beaver
aircraft.cfg \(flightsim.X)\title= Aerosoft DHC-2A C-GSKY modern
aircraft.cfg \(flightsim.X)\title=Beaver DHC-2A DQ-GEE
aircraft.cfg \(flightsim.X)\title=DHC-2A DQ-GEE modern
aircraft.cfg \(flightsim.X)\title= Aerosoft DHC-2A N299EE
aircraft.cfg \(flightsim.X)\title=Beaver Aerosoft DHC-2A N299EE modern

Edit the FSUIPC.ini file:

Scenario 1: If “ShortAircraftNameOK=No”

Presuming that you have already assigned the axes, keys and buttons and calibrated the joystick for one
of the above variants or repaints: in order to get the same settings for the rest of the above
variants/repaints of the Aerosoft Beaver you would need to edit the FSUIPC.ini file and add 4 separate
entries for each title name (exactly as above) under [Axes], [Buttons], [Keys], [Joystick Calibration] to
ensure that all of the settings were exactly the same, ie 28 entries in all. Pretty tedious in fact— I had
over 40 variants/repaints of this plane so I would have need 160 entries in the FSUIPC.ini file.

[Axes. Aerosoft Beaver DHC-2A 55-068]
[Buttons. Aerosoft Beaver DHC-2A 55-068]
[Keys. Aerosoft Beaver DHC-2A 55-068]
[JoystickCalibration.Aerosoft Beaver DHC-2A 55-068]

[Axes. DHC-2A C-GSKY Beaver]
[Buttons. DHC-2A C-GSKY Beaver]
[Keys. DHC-2A C-GSKY Beaver]
[JoystickCalibration.DHC-2A C-GSKY Beaver]

[Axes. Aerosoft DHC-2A C-GSKY modern]
[Buttons. Aerosoft DHC-2A C-GSKY modern]
[Keys. Aerosoft DHC-2A C-GSKY modern]
[JoystickCalibration.Aerosoft DHC-2A C-GSKY modern]

[Axes. Beaver DHC-2A DQ-GEE]
[Buttons. Beaver DHC-2A DQ-GEE]
[Keys. Beaver DHC-2A DQ-GEE]
[JoystickCalibration.Beaver DHC-2A DQ-GEE]

[Axes. DHC-2A DQ-GEE modern]

 48

[Buttons. DHC-2A DQ-GEE modern]
[Keys. DHC-2A DQ-GEE modern]
[JoystickCalibration.DHC-2A DQ-GEE modern]

[Axes. Aerosoft DHC-2A N299EE]
[Buttons. Aerosoft DHC-2A N299EE]
[Keys. Aerosoft DHC-2A N299EE]
[JoystickCalibration. Aerosoft DHC-2A N299EE]]

[Axes. Beaver Aerosoft DHC-2A N299EE modern]
[Buttons. Beaver AerosoftDHC-2A N299EE modern]
[Keys. Beaver Aerosoft DHC-2A N299EE modern]
[JoystickCalibration.Beaver Aerosoft DHC-2A N299EE modern]

Scenario 2: If “ShortAircraftNameOK=YES”

12 entries would be required to make sure all settings were the same

[Axes. Aerosoft
[Buttons. Aerosoft
[Keys. Aerosoft
[JoystickCalibration.Aerosoft]

[Axes. DHC]
[Buttons. DHC]
[Keys.DHC]
[JoystickCalibration.DHC]

[Axes. Beaver]
[Buttons. Beaver]
[Keys.Beaver]
[JoystickCalibration.Beaver]

Explanation:

1. “Aerosoft” would pick all those entries in the title STARTING with “AEROSOFT”, but NOT
Aerosoft in any other part of the title.

2. “DHC” would pick all those entries in the title STARTING with “DHC” but not those with “DHC” in
any other part of the title

3. “Beaver” would pick all those entries in the title STARTING with “Beaver” but not those with
“Beaver” in any other part of the title

Scenario 3: If “ShortAircraftNameOK=Substring”

4 entries only, i.e. “DHC” in the FSUIPC.ini file would result in all variants having exactly the same settings
– “DHC” is common to all titles.

[Axes. DHC]
[Buttons. DHC]
[Keys. DHC]
[JoystickCalibration.DHC]

To summarise:

ShortAircraftNameOK=No One entry for each different title in the aircraft.cfg file

ShortAircraftNameOK=Yes Picks up the starting part of the title in the aircraft.cfg file

ShortAircraftNameOK=Substring Picks up any part of the title in the aircraft.cfg file

 49

Title in aircraft.cfg file ShortAircraftNameOK=

No Yes Substring

title=Airbus A321
title=Airbus A321 Paint2
title=Airbus A321 Paint4
title=Airbus A321 Paint5
title=Boeing 737-400
title=Boeing 737-400 Paint1
title=Boeing 737-400 Paint2
title=Boeing 737-400 Paint3
title=Boeing 737-400 Paint4
title=Boeing 747-400
title=Boeing 747-400 Paint1
title=Boeing 747-400 Paint2
title=Boeing 747-400 Paint3
title=Boeing 777-300
title=Boeing 777-300 Paint1
title=Boeing 777-300 Paint2
title=Boeing 777-300 Paint 3

Separate entry for
each title

“Airbus”: Would
apply to all entries
starting with Airbus.

“Boeing” would apply
to all entries starting
with Boeing.

“A321”: Any

variant with A321

in the title.

“Paint” Any

variant with PAINT

in the title.

“737”: Any variant

with 737 in the title.

Explanation: ShortAircraftNameOK=Substring Any text that is in any position in the “title” located in the
aircraft.cfg file that is inserted in the ini file as above will result in the same settings for those aircraft.
For instance choosing “737” ie [Axes.737] etc would result in all planes with 737 in the title having the
same settings. Likewise choosing “Boeing” would cover all variants/repaints with Boeing in the title

To summarise if you had 20 variants/models/repaints with all different titles you would need 20 entries
per section (80 in all) in the ini file. Using ShortAircraftNameOK=Substring you could cut this back to
just 1 entry per section (4 in total).

Published by Peter L. Dowson, February 2009

Support forum: http://forums.simflight.com/viewforum.php?f=54

http://forums.simflight.com/viewforum.php?f=54

