
FSUIPC: Lua Plug-Ins
(For FSUIPC4/ESPIPC version 4.325 and later, or FSUIPC3 version 3.845 and later)

This document is the interim Manual for the LUA plug-in facilities first added to FSUIPC4 at

version 4.211, and FSUIPC3 at version 3.841. For now it takes the form of a series of questions

and answers:

What is “Lua”?
It is a programming language. The best way to see and learn what it is all about is to visit this web page:

http://www.lua.org/about.html

What is a “plug-in”?
Plug-in is simply a technical term for a program which can be run inside or as part of another program. Effectively

FSUIPC is a “plug-in” for FS. The Lua facilities in FSUIPC allow multiple plug-ins by loading and running

individual Lua programs.

Why has this been added to FSUIPC?
Because I am often asked by users, especially cockpit builders, how to do quite sophisticated things with FSUIPC’s

quite basic button programming facilities, and adding Lua plug-in capabilities makes those much more powerful and

much easier to deal with and see what is going on.

The use of the compound and conditional button programming facilities, combined with multiple parameter

assignments to buttons, is not only awkward, it is really pushing the simple parameter design in the INI files to the

limit.

What is provided in FSUIPC for Lua programming?
First, FSUIPC recognises all files placed into the Modules folder that have filetype “.lua”. These should all be Lua

programs, either in normal interpreted source format or in the “compiled” format if desired (Lua provide a compiler

“luac.exe” which just saves a little loading time by pre-processing the source into a binary format easier for the

interpreter).

All .lua files are assigned a numeric reference and listed with it in the [LuaFiles] section of the FSUIPC INI file. It

is the reference number which is encoded into other references to Lua programs within the INI file – much like the

way Macro files are handled.

When there are Lua files in the modules folder, FSUIPC adds a number of new controls for assignment in all of the

usual places – Buttons & Switches, Key Presses, and Axis Assignments. The controls added for each Lua program

are:

Lua <name> to run the named program

Lua Debug <name> to run the program in debug mode (more below)

Lua Kill <name> to forcibly terminate the named program, if it is running

Lua Set <name> to set a flag (0-31 according to parameter) specifically for the named program to test

Lua Clear <name> to clear a flag (0-31 according to parameter) specifically for the named program to test

Lua Toggle <name> to toggle a flag (0-31 according to parameter) specifically for the named program to test

There’s also a general Lua control “Lua Kill All” to forcibly terminate all currently running Lua programs.

FSUIPC currently allows up to 256 simultaneously running Lua programs, each independently running in their own

FS thread. When you start a Lua program running which is already running, the previous incarnation is first

ruthlessly and unceremoniously terminated. Because of the termination facilities provided it is not a problem having

a program which is designed to sit in a loop forever doing things, like monitoring the state of FS values.

There are currently three explicitly reserved Lua names, for programs which are run automatically if present:

Ipcinit.lua automatically run as soon as FSUIPC has initialised (and for FSX or ESP, connected correctly to

SimConnect).

http://www.lua.org/about.html

Ipcready.lua automatically run when FS is really “ready to fly”.

ipcDebug.lua automatically loaded before any Lua program which is started in Debug mode.

What about access to FSUIPC offsets, FS facilities, and files?
The main useful standard libraries provided with Lua version 5.1 are present and already loaded when any FSUIPC

Lua plug-in is run. These are:

package Facilities for loading and building Lua modules

table Table manipulation, operating on arrays or lists

io File input and output facilities

os Operating system functions like date, time, plus more ambitious stuff

string String manipulation

math All the maths functions you could possibly desire

debug Functions to help get more complex Lua programs working

Note that in the early releases I have not specifically removed anything from these libraries. That doesn’t mean that

all of their facilities will work, nor are safe to use without risk of crashing FS or distorting its operations. But that’s

one of the risks of power. Looking at the Package and Operating System functions I can see plenty of scope for

getting into real trouble! (If folks would please notify me when they find something so dangerous it should be

removed, I will gradually make it all “safer”, but hopefully still not restrictive).

The only change to the standard libraries so far is to make the os.exit function merely exit and terminate the Lua

thread it is executed in. (It is the same as the added IPC library ipc.exit function).

In addition to these standard libraries, FSUIPC adds three more:

 ipc Facilities for interfacing to FS and FSUIPC.

 logic Bit-manipulating logic facilities, otherwise missing in Lua

 event Facilities for taking action on events in FS – arising from buttons, keypresses, FS

controls and FSUIPC offset changes

These three are documented in a separate document which you should find with this package.

On top of these facilities, when a Lua plug-in is run because of an FS control (Lua <name> or Lua Debug <name>),

any parameter passed with that control is available to the Lua program as a variable called ipcPARAM. This might

be particularly useful if the control is assigned to an Axis or POV, where the axis or POV value is thereby passed to

the program.

The facilities provided by Lua and these libraries are certainly quite sufficient to actually program working

subsystems for your aircraft cockpit. Currently there are no specific hardware interfaces – you’d talk to most current

hardware via FSUIPC offsets, or by using USB-type filenames and the “io” file functions. If folks would like direct

interfaces to popular hardware interface cards, those used for display driving, and button/switch/dial inputs, I’m sure

these can be built in, or added on, perhaps partially as Lua programs themselves, or with some extra libraries

specifically oriented. Mostly I cannot do these directly myself, or at least not without the hardware in question, but

I’d be glad to discuss ways and means with those who could either do it, or assist appropriately.

What about some examples, please?
Included in the package you have downloaded are four LUA files, ready to be used:

ipcDebug.lua The auto-loaded program section loaded before any Lua program being debugged.

It enables line tracing to the Lua program’s own Log file.

log lvars.lua [For FSUIPC4 only] a useful little routine which logs all of the currently

available local panel variables (LVARS) which can be read and written using the

Lua ipc library, or written using FSUIPC Macros via the “L:<name>,action”

facilities. The values are listed in the Log initially and when any change, and also

displayed as they change on the screen, in the Lua display window.

 Use this to work out how to define your macros in order to operate many switches

and facilities otherwise inaccessible without using a mouse.

Init pos.lua A small program which simply places the user’s aircraft at a fixed place with a

given airspeed. (The airspeed setting only works correctly with FSX or ESP).

Freeze.lua Attempts to freeze the aircraft position and attitude by reading these values and

then repeatedly copying those details back in a continuous loop. On FSX/ESP,

because of the asynchronous nature of the SimConnect interface, this tends to

produce a judder with the position and attitude gradually changing, so it isn’t a

very good idea (FSX/ESP provide Freeze controls in any case.

 On FS9 the freeze does tend to work a little better, without judder.

Display vals.lua Continuous on-screen displays of some aircraft variables. Undock the window fro

greater clarity.

Record to csv.lua A data recorder, writing lines of important data about the aircraft at up to 20 times

a second, The file is in CSV format, displayed nicely in Excel and similar

programs. [Note that the original version included a syntax error in line 49].

Landing.lua A (failed) attempt to show off some of the things you can do using the event

library. This one tries to provide landing assistance automatically, but needs a lot

of development and tailoring. Nevertheless, the example does show some

interesting ideas for the Event library facilities.

I’d like to add more practical examples of cockpit solutions too, when they arise, so please do tell me things you

manage to achieve with Lua!

Published by Peter L. Dowson, 4
th

 February 2009

