
FSUIPC: Lua Library Reference
(for FSUIPC4, version 4.431 and later, and FSUIPC3 version 3.855 and later)

This document merely lists the facilities added to the standard Lua library complement via three new libraries ―ipc‖,

―logic‖ and ―event‖.

The ipc library adds all of the facilities needed to interact with FS and FSUIPC (or ESPIPC), whilst the logic library

justs adds bit-oriented logical operations which are otherwise missing from Lua but needed when dealing with

arrays of bits for switches and options in FS. The event library provides ways of having dormant Lua plug-ins

containing functions activated by events in FS. Events which can be so detected include joystick buttons, keyboard

combinations being pressed/released, FS controls being used, and FSUIPC offsets changing values.

The IPC Library

Routine template Description

n = ipc.buttons(joynum) Get button settings: ―joynum‖ is a joystick number, the same as

shown in FSUIPC‘s Button assignments tab. Provided the joystick

is one being scanned by FSUIPC (i.e. it has a button assignment),

this function returns the 32-bit mask showing which buttons are

currently ―on‖ (1) and ―off‖ (0). Use the logic functions to test or

isolate bits. Button 0 is the lowest bit (2^0) and so on.

n = ipc.ask(“string”) This prompts the user via a message window on the FS screen,

displaying the ―string‖ as a message. This can be single or

multiple-lined (use ‗\n‘ for a new line).

The user answers with a string value, which is the result of the call.

It is then up to the Lua program as to how to interpret this.

The window and the reply operate just like the Window used to

prompt users for mouse macro names.

ipc.control(n)

ipc.control(n, param)

Sends the FS or FSUIPC control ‗n‘, with the optional parameter

(assumed 0 if omitted).

FS controls are listed in a List of ...‖ controls document provided

separately. FSUIPC added control numbers are listed in the

Advanced User‘s guide.

ipc.display(“string”)

ipc.display(“string”, delay)

Displays the given string value in FS, in a sizeable and undockable

window entitled ―Lua display‖. The maximum string which will

be displayed is 1023 characters, including new lines (\n) codes.

If the delay parameter is provided (it is a number) it specifies how

long the display should stay for, in seconds. To remove a display

prematurely, send a null string (―‖).

Note that there is only one such window for all Lua plug-ins. The

last one wins!

n = ipc.elapsedtime() This returns the number of milliseconds since FSUIPC was started.

It is the same as the value shown in the Log files.

ipc.exit() This terminates the current Lua plug-in thread. For plug-ins using

the event library this is the only programmatic way of doing so, as

the registration of the event processing functions effectively keeps

the thread idling, waiting for those events, until the thread is

forcibly killed by the Kill control or by re-loading the same plug-

in.

x = ipc.get(“name”) Retrieves a Lua value (any type) previously stored as a Global by

―ipc.set‖. This mechanism provides a way for a Lua plug-in to pass

values on to successive iterations of itself, or provide and retrieve

values from other Lua plug-ins.

n = ipc.getLvarId(“name”)

[FSUIPC4 only]

This gets the ID of the current FS local panel variable identified by

the name given. These variables are L: <name>. You can provide

the L: part explicitly or leave it out.

The value returned is numeric in the range 0 to 65535, or nil if the

variable is not available.

n = ipc.getLvarName(id)

[FSUIPC4 only]

This gets the name of the current FS local panel variable identified

by the id value, a numeric in the range 0 to 65535. These variables

are L: <name> , but the result provided is only the ,name> part,

without the L:

 The value returned is a string, or nil if the variable is not available.

To get all current LVars you can iterate from 0 upwards until nil is

returned.

ipc.keypress(keycode)

ipc.keypress(keycode, shifts)

Sends the specified key press to FS. If the ‗shifts parameter is

omitted a normal unshifted keycode is sent and a press-and-release.

The Advanced User‘s guide gives a list of keycodes and shifts.

ipc.log(“string”) Logs the string provided. The log entry goes to the FSUIPC log

gile unless either the Lua plug-in is being run in debug mode (Lua

Debug control), or Lua logging is enabled in the FSUIPC options.

In these two cases the log message goes to the Lua plug-in‘s log

file instead.

n = ipc.readDBL(offset) Reads the double floating point (64-bit) value at the given IPC

offset.

The offset can be specified in Lua format hexadecimal, e.g.

0x0AEC, or in decimal, or as a string e.g. ―0AEC‖.

n = ipc.readFLT(offset) Reads the single floating point (32-bit) value at the given IPC

offset.

The offset can be specified in Lua format hexadecimal, e.g.

0x0AEC, or in decimal, or as a string e.g. ―0AEC‖.

n = ipc.readDD(offset) Reads the 64-bit signed integer value at the given IPC offset.

The offset can be specified in Lua format hexadecimal, e.g.

0x0AEC, or in decimal, or as a string e.g. ―0AEC‖.

n = ipc.readLvar(“name”)

[FSUIPC4 only]

This reads the current value of the FS local panel variable called

―name‖. These are L: <name> values. You can provide the L: part

explicitly or leave it out.

The value returned is numeric, or nil if the variable is not available.

n = ipc.readSB(offset) Reads the 8-bit signed byte value at the given IPC offset.

The offset can be specified in Lua format hexadecimal, e.g.

0x0AEC, or in decimal, or as a string e.g. ―0AEC‖.

n = ipc.readSD(offset) Reads the 32-bit signed integer value at the given IPC offset.

The offset can be specified in Lua format hexadecimal, e.g.

0x0AEC, or in decimal, or as a string e.g. ―0AEC‖.

n = ipc.readSTR(offset, length) Reads the ASCII string at the given IPC offset, with the maximum

length as specified.

The offset can be specified in Lua format hexadecimal, e.g.

0x0AEC, or in decimal, or as a string e.g. ―0AEC‖.

x1, x2, x3 ... =

ipc.readStruct(offset, valuelist,

...)

for multiple groups:

x1, x2, x3 ... =

Reads multiple values from one or more groups of successive IPC

offsets, each starting with one given explicitly.

The offsets can be specified in Lua format hexadecimal, e.g.

0x0AEC, or in decimal, or as a string e.g. ―0AEC‖.

The lists consist of one of more entries defining numbers and types

ipc.readStruct(offset1,

valuelist1, offset2, valuelist2,

...)

of values, as ‗nTYPE‘. Types supported are:

UB unsigned 8-bit byte

UW unsigned 16-bit word

UD unsigned 32-bit dword

SB signed 8-bit byte

SW signed 16-bit word

SD signed 32-bit dword

DD signed 64-bit value

DBL 64-bit double floating point

FLT 32-bit single floating point

STR string of ASCII characters (in this case the preceding

number, n, gives the length not a repeat count)

The values are assigned in order to the variables on the left-hand

side. For example:

A, B, C, S, V, W =

 ipc.readStruct(0x1234, 3SB, 12STR, 2DBL)

Assigns 6 values (not 17), in order:

A = the signed byte at 0x1234

B = the signed byte at 0x1235

C = the signed byte at 0x1236

S = the <= 12 character string at 0x1237

V = the double float value at offset 0x1243

W = the double float value at offset 0x124B

n = ipc.readSW(offset) Reads the 16-bit signed word value at the given IPC offset.

The offset can be specified in Lua format hexadecimal, e.g.

0x0AEC, or in decimal, or as a string e.g. ―0AEC‖.

n = ipc.readUB(offset) Reads the 8 bit unsigned byte value at the given IPC offset.

The offset can be specified in Lua format hexadecimal, e.g.

0x0AEC, or in decimal, or as a string e.g. ―0AEC‖.

n = ipc.readUD(offset) Reads the 32-bit unsigned integer value at the given IPC offset.

The offset can be specified in Lua format hexadecimal, e.g.

0x0AEC, or in decimal, or as a string e.g. ―0AEC‖.

n = ipc.readUW(offset) Reads the 16-bit unsigned word value at the given IPC offset.

The offset can be specified in Lua format hexadecimal, e.g.

0x0AEC, or in decimal, or as a string e.g. ―0AEC‖.

ipc.set(“name”, value) Stores a Lua value (any type) as a Global with the given name.

This can be retrieved by this or any other Lua plug-in by using

―ipc.get‖. This mechanism provides a way for a Lua plug-in to pass

values on to successive iterations of itself, or provide and retrieve

values from other Lua plug-ins.

ipc.sleep(msecs) Suspends execution of the plug-in for the given number of

milliseconds, allowing other threads to operate with less hindrance.

x = ipc.testbutton(joynum, btn) Tests a scanned button. ―joynum‖ is a joystick number, the same as

shown in FSUIPC‘s Button assignments tab. Provided the joystick

is one being scanned by FSUIPC (i.e. it has a button assignment),

this function returns the state of the specified button number (0–31)

as TRUE or FALSE.

X = ipc.testflag(flagnum) Tests one of the 32 flags (numbered 0–31) specifically available

for this plug-in and controlled by the added FSUIPC controls

(LuaFlag Set, Clear and Toggle). These are provided so that the

user can communicate with the plug-ins via assigned buttons or

keypresses.

ipc.writeDBL(offset, value) Writes the value provided as a double floating point (64-bit) value

at the given IPC offset.

The offset can be specified in Lua format hexadecimal, e.g.

0x0AEC, or in decimal, or as a string e.g. ―0AEC‖.

ipc.writeFLT(offset, value) Writes the value provided as a single floating point (32-bit) value

at the given IPC offset.

The offset can be specified in Lua format hexadecimal, e.g.

0x0AEC, or in decimal, or as a string e.g. ―0AEC‖.

ipc.writeDD(offset, value) Writes the value provided as a 64-bit signed integer value at the

given IPC offset.

The offset can be specified in Lua format hexadecimal, e.g.

0x0AEC, or in decimal, or as a string e.g. ―0AEC‖.

ipc.writeLvar(“name”, n)

[FSUIPC4 only]

This writes to the FS local panel variable called ―name‖. These are

L: <name> values. You can provide the L: part explicitly or leave it

out.

If the variable is not currently available, nothing happens.

ipc.writeSB(offset, value) Writes the value provided as an 8-bit signed byte value at the given

IPC offset.

The offset can be specified in Lua format hexadecimal, e.g.

0x0AEC, or in decimal, or as a string e.g. ―0AEC‖.

ipc.writeSD(offset, value) Writes the value provided as a 32-bit signed integer value at the

given IPC offset.

The offset can be specified in Lua format hexadecimal, e.g.

0x0AEC, or in decimal, or as a string e.g. ―0AEC‖.

ipc.writeSTR(offset, “string”)

ipc.writeSTR(offset, “string”,

length)

Writes the ASCII string at the given IPC offset, either with the

same length or extended or truncated to the length optionally

specified. The string will have a zero terminator added, so allow

for this. If it is extended it is with zeroes.

The offset can be specified in Lua format hexadecimal, e.g.

0x0AEC, or in decimal, or as a string e.g. ―0AEC‖.

ipc.writeStruct(offset,

valuelist, ...)

for multiple groups:

ipc.writeStruct(offset1,

valuelist1, offset2, valuelist2,

...)

Writes multiple values from one or more groups of successive IPC

offsets, each starting with the one given explicitly.

The offset can be specified in Lua format hexadecimal, e.g.

0x0AEC, or in decimal, or as a string e.g. ―0AEC‖.

The list consists of one of more entries defining numbers and types

of values, as ‗nTYPE‘. Types supported are:

UB unsigned 8-bit byte

UW unsigned 16-bit word

UD unsigned 32-bit dword

SB signed 8-bit byte

SW signed 16-bit word

SD signed 32-bit dword

DD signed 64-bit value

DBL 64-bit double floating point

FLT 32-bit single floating point

STR string of ASCII characters (in this case the preceding

number, n, gives the length not a repeat count)

The values to be written must follow, in the parameter list, the

Type specifier. For example:

ipc.writeStruct(0x1234, 3SB, 55, 66, 77,

 12STR, ―a string‖, 2DBL, 1.234, 3.456)

Writes 6 values (not 17), in order:

55 to the signed byte at 0x1234

66 to the signed byte at 0x1235

77 to the signed byte at 0x1236

―a string‖ with zero padding to the bytes at 0x1237

1.234 to the double float value at offset 0x1243

3.456 to the double float value at offset 0x124B

ipc.writeSW(offset, value) Writes the value provided as a 16-bit signed word value at the

given IPC offset.

The offset can be specified in Lua format hexadecimal, e.g.

0x0AEC, or in decimal, or as a string e.g. ―0AEC‖.

ipc.writeUB(offset, value) Writes the value provided as an 8 bit unsigned byte value at the

given IPC offset.

The offset can be specified in Lua format hexadecimal, e.g.

0x0AEC, or in decimal, or as a string e.g. ―0AEC‖.

ipc.writeUD(offset, value) Writes the value provided as a 32-bit unsigned integer value at the

given IPC offset.

The offset can be specified in Lua format hexadecimal, e.g.

0x0AEC, or in decimal, or as a string e.g. ―0AEC‖.

ipc.writeUW(offset, value) Writes the value provided as a 16-bit unsigned word value at the

given IPC offset.

The offset can be specified in Lua format hexadecimal, e.g.

0x0AEC, or in decimal, or as a string e.g. ―0AEC‖.

The Logic Library

Note that the names of all the functions provided in the logic library begin with a capitalised letter. This is

important. It prevents Lua interpreter errors arising from the use of the reserved words ―and‖, ―or‖ and ―not‖.

Note that all of these functions handle 32-bit unsigned values, no matter how the parameters are provided.

Routine template Description

X = logic.And(y, z) X = y & z

For example, in binary, 0011 & 1010 = 0010

X = logic.Nand(y, z) X = (~y) | (~z)., same as ~(y & z)

For example, in binary, 0011 nand 1010 = 1101

X = logic.Nor(y, z) X = (~y) & (~z)., same as ~(y | z)

For example, in binary, 0011 nor 1010 = 0100

X = logic.Not(y) X = ~y

For example, in binary, ~ 0011 = 1100

X = logic.Or(y, z) X = y | z

For example, in binary, 0011 | 1010 = 1011

X = logic.Shl(y, n) X = y << n

For example, in binary, 0011 << 1 = 0110

X = logic.Shr(Y, N) X = y >> n

For example, in binary, 1100 >> 1 = 0110

X = logic.Xor(Y, Z) X = y xor z.

For example, in binary, 0011 xor 1010 = 1001

The Event Library

Routine template Description

event.button(joynum, button,

“function-name”)

event.button(joynum, button,

downup, “function-name”)

Your processing function:

function-name(joynum, button,

downup)

Executes the named function (named as a string, ―...‖), which

must be defined before this line, when a given joystick button

changes.

The button number provided can be 0–31 for normal buttons,

32–39 for 8-way POV, or 255 to indicate that the function

should receive all 32 button states when any change.

Except for the button ―255‖ case, the optional ―downup‖

parameter specifies the change to be detected:

Omitted when pressed

1 when pressed

2 when released

3 when pressed or released (see Note * below)

The function is called with the joystick, button and downup

details so that the same function can, if desired, be used for

more than one such event.

In the special case of the button being specified as 255, then

any button change (buttons 0–31, not POV) on the specified

joystick will result in the function being executed with the

button state provided in the ‗button‘ parameter as a 32-bit

mask—bit 0 referring to button 0 and so on.

event.control(controlnum,

“function-name”)

event.control(controlnum, delta,

“function-name”)

Your processing function:

function-name(controlnum, param)

Executes the named function (named as a string, ―...‖), which

must be defined before this line, when the specified FS

control occurs. FS controls are those numbered from 65536

upwards, and listed in my FS control lists.

If the control is an axis-type control, with a parameter, you

can limit the flood of calls you might otherwise get for a

changing axis by specifying the ―delta‖ parameter. This is a

positive number which tells FSUIPC to only call the function

when the parameter from FS changes by at least that amount.

The control number and its parameter are supplied to the

function so that the same function can, if desired, be used for

more than one such event.

event.key(keycode, shifts,

“function-name”)

event.key(keycode, shifts,

downup, “function-name”)

Your processing function:

function-name(keycode, shifts,

downup)

Executes the named function (named as a string, ―...‖), which

must be defined before this line, when a given keypress

combination occurs.

The key code provided is one of the standard list (see the

FSUIPC Advanced User‘s guide), and the ―shifts‖ represent

and combination of these (add them up). An 8 or zero value

refers to the plain key:

1 Shift

2 Control

4 Alt

16 Tab

32 Windows

64 Apps

The optional ―downup‖ parameter specifies the change to be

detected:

Omitted when pressed

1 when pressed

2 when released

3 when pressed or released (see Note * below)

Note that repeated keys (auto-repeats resulting from holding

the keys down) are not processed.

The function is called with the key and downup details so that

the same function can, if desired, be used for more than one

such event.

event.offset(offset, type,

“function-name”)

event.offset(offset, “STR”,

length, “function-name”)

Your processing function:

function-name(offset, value)

Executes the named function (named as a string, ―...‖), which

must be defined before this line, when the specified FSUIPC

offset changes.

The offset can be specified in Lua format hexadecimal, e.g.

0x0AEC, or in decimal, or as a string e.g. ―0AEC‖.

The type is one of these:

UB unsigned 8-bit byte

UW unsigned 16-bit word

UD unsigned 32-bit dword

SB signed 8-bit byte

SW signed 16-bit word

SD signed 32-bit dword

DD signed 64-bit value

DBL 64-bit double floating point

FLT 32-bit single floating point

STR string of ASCII characters

The length parameter is omitted (or ignored) except for the

―STR‖ type, where is can optionally define the string length

(max 256). If the length is omitted for the STR type then the

string will be zero terminated and will have a maximum

length of 255 not including the final zero.

The function is called with the offset, so that the same

function can, if desired, be used for more than one such event,

and also the current (new) value in that offset. This will be a

Lua number for all types except STR where it will be a string.

event.cancel(“function-name”) This simply removes all event tracking by the named

function. This is typically used in a Lua program which uses

one or two specific events to start a mode where many other

events need to be monitored, but which are no longer needed.

An example might be some processing for a landing aircraft.

Perhaps the gear being lowered is the initiating event, at

which more events are requested. After the aircraft has

landed, the program can cancel these latter events and go back

to waiting for the next time the gear is lowered.

* Note: If you really do need to detect both Key or Button presses and releases, and the action is possibly going to

be quite fast (i.e. not latching, as with a toggle switch), then you should specify the event separately for ―down‖ and

―up‖ rather than use the combined facility. This is because there is no queuing of different event types within each

event request—only a count of how many—so the order and nature of the press/release operations will be confused

and some may be seen wrongly.

The separate event calls for the press and release can of course still both specify the same function-name, so the

effect is still going to be similar. However, because of the asynchronous nature of the key/button scanning in

relation to the plug-in threads, whilst you will not miss any presses or releases this way, you may process them in

the wrong order.

You could, of course, deal with the problems either method may present by keeping a local flag showing the press

or release state, rather than relying only on the ―downup‖ parameter provided in the call to your function.

Published by Peter L. Dowson, 4
th

 February 2009

